Assessing and Safeguarding Network Resilience to
Nodal Attacks

Pin-Yu Chen and Alfred O. Hero III, Fellow, IEEE
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA
Email : {pinyu,hero}@umich.edu

Abstract—This paper introduces new methods for evaluating
and improving resilience of network connectivity to attacks or
failures on nodes of the network. The network connectivity
is evaluated using a new centrality measure that quantifies
sensitivity of the size of the largest connected component to node
removals. Based on this centrality measure, a new method for
improving resilience is introduced called edge rewiring. The topol-
ogy of the power grid of western US states is used to illustrate
the proposed methods. Using the proposed centrality measure,
we show that the power grid topology is especially vulnerable
to nodal attacks. In particular, by using our new centrality
measure, an attacker could reduce the largest component size
by nearly a factor of two by only targeting 0.2% of the nodes.
More importantly, we show that network resilience can be greatly
improved via a few edge rewires without introducing additional
edges in the network.

Index Terms—centrality attacks, edge addition, edge rewiring,
network connectivity

I. INTRODUCTION

The problem of establishing resilience of network connec-
tivity to node removals has received much recent attention
[1]-[4]. Resilience is closely related to reliability of networks
when a subset of nodes are inactivated. This problem arises
in applications including service disruption in communication
systems caused by terminal failures, and blackout in power
systems caused by power station shutdowns, among others.
In these applications network functionality can be disrupted
by targeted attacks, e.g., Denial of service (DoS) or jamming
attacks, or by natural occurrences, e.g., weather-related link
failures and power outages. In this paper we introduce a
new method for assessing the resilience of networks to node
removals and preventive approaches to connectivity attacks.

A resilient network has global connectivity and largest
component size that are only minimally disrupted by limited
attacks on nodes or edges. For example, a fully connected
network allows communication between all pairs of nodes and
its largest component is the entire set of nodes in the network.
One measure of network connectivity is given by the standard
graph-theoretic definition: for a fully connected graph con-
nectivity is the minimum number of node removals required
to reduce the size of the largest component. However, this
definition does not account for the number of communication
paths between nodes that are disrupted, which is more relevant
to the functioning of the network. A more relevant measure of
connectivity is proposed here: the minimum number of node
removals necessary to reduce the size of the largest component
by a fixed proportion, e.g. 10% or 50%, of its original size.

To illustrate consider a large network where one of its nodes
is connected to the rest of the network by a single edge (i.e.,
node degree one). Removing this edge (or the adjacent node)
will reduce both the number of communication paths and the
largest component size by one. However, if the network is
composed of two cliques of equal size connected by a single
edge then removal of this edge will reduce the number of paths
and the largest component size by a factor of two.

A node centrality measure is a quantity that measures the
level of importance of a node in a network. The utility of
centrality measures is that they can break the combinatorial
bottleneck of searching through all the possible permutations
and combinations of nodes that might reduce largest compo-
nent size. An attack that removes nodes according to a measure
of centrality, such as the one introduced in Sec. II, will be
referred to a centrality attack. For example, the authors of
[1], [2] and [3] study the effectiveness of degree centrality
attacks, i.e., removing the largest hub nodes, as a way to reduce
the size of the largest component of the network. However,
it has been shown in [4] that node degree is not the most
effective centrality measure for minimizing largest component
size. For different network topologies, investigating resilience
of network connectivity to centrality attacks provides a unified
metric for evaluating network vulnerabilities.

Quantitative network resilience measures can be used to
assess the effectiveness of preventive approaches for hardening
a network against attacks. Two preventive approaches are
discussed in this paper. The first method is the edge addition
method [5], where edges are added to the network to enhance
network resilience. The second method is the proposed edge
rewiring method, where new edges are introduced by swapping
a subset of existing edges.

One possible advantage of the edge rewiring method is that
it requires no additional edges to enhance network resilience.
The edge rewiring method might be preferable to the edge
addition method in the following aspects:

o Lower operational and maintenance costs: for power
grids, power dissipation and facility maintenance costs
are proportional to the total number of edges in the
network.

« Easier link monitoring for network security: in large-
scale systems such as Internet and cellular infrastructures,
introducing additional edges inevitably raises the security
risks to information exposure, and it also incurs extra
burden for system administration and monitoring.

« Reduced provisioning budget: in networking paradigms



TABLE I
SUMMARY OF CENTRALITY MEASURES

Global measure | Local measure Mathematical expression
Betweenness v betweenness(i) =35 ;i > i s ”(’j’k?)
Closeness v closeness(i) = 1/3 "y iz P(i,5)
Eigenvector centrality (eigen centrality) v eigen(i) = A\l > jev Aij&j
Degree v di = > ien, Aij
Ego centrality v ego(i) =D 1 D s 1/ [A%(i) o (I— A(i))]kj
Local Fiedler Vector Centrality (LFVC) V1 LEVC(i) = > v, (Wi — y;)?

with stringent energy/bandwidth constraints such as sen-
sor networks and peer-to-peer (P2P) networks, estab-
lishing additional edges consumes more networking re-
sources.

To illustrate resilience of network connectivity to different
centrality attacks and effectiveness of preventive approaches
we consider the power grid network for western US states [7].
We show that different centrality measures differ significantly
in their ability to assess resilience of this real-world network.
If the proposed centrality measure is used by an attacker,
the largest component size can be reduced to nearly half
of its original size by removing only 0.2% of nodes in the
network. Attacks using other types of centrality measures are
less effective in reducing largest component size. In particular,
even if as many as 1% of the nodes are removed, less than
6% reduction in largest component size is achieved by other
types of centrality attacks. In addition, we show that the
proposed edge rewiring method can greatly improve network
resilience via only a few edge rewires while achieving the
same performance as the edge addition method.

The rest of the paper is organized as follows. Sec. II reviews
several centrality measures, and their properties are summa-
rized in Table I. Sec. III investigates the resilience of network
connectivity to different centrality attacks on the power grid
topology. Sec. IV discusses the edge addition method and
the proposed edge rewiring method as preventive approaches
to centrality attacks. We implement the two preventive ap-
proaches and evaluate their performances on the power grid
topology in Sec. V. Finally, Sec. VI concludes the paper.
For notations, uppercase letters in boldface represent matrices,
lowercase letters in boldface represent vectors, and uppercase
letters in calligraphic face represent sets. ()7 denote matrix
and vector transpose.

II. CENTRALITY MEASURES

Consider a network as a connected graph G = (V,€&),
where )V is the set of nodes and &£ is the set of edges.
The connectivity structure of G can be represented by the
[V| x |V| adjacency matrix A, where |V| is the number of
nodes in G and A;; = 1 if node 7 and node j are connected
by an edge, otherwise A,;; = 0. Let N; denote the set
of nodes connecting to node ¢ (i.e., the set of neighbors
of node 7), the degree of a node is the number of edges

Although LFVC is a global centrality measure, it is locally computable
via distributed power iteration method [6].

connected to it, i.e., d; = Zje ~; Aij. The degree matrix
D is defined as D = diag (d1,da, . ..,d|y|), where D is a
diagonal matrix with degree information on its main diagonal
and the rest of the entries being 0. The graph Laplacian
matrix L is defined as L = D — A, and therefore it encodes
degree information and connectivity structure of a graph. L
is a positive semidefinite matrix that all its eigenvalues are
nonnegative and trace(L) = 2|&|, where trace(L) is the sum
of eigenvalues of L and |£| is the number of edges in G.
Moreover, the smallest eigenvalue of L is always 0 and the
eigenvector of the smallest eigenvalue is a constant vector.
The second smallest eigenvalue of L, denoted by u(L), is also
known as the algebraic connectivity [8]. It has been proved in
[8] that u(L) is a lower bound on node and edge connectivity
for any non-complete graphs. That is, algebraic connectivity
< node connectivity < edge connectivity.

Centrality measures can be classified into two categories,
global and local measures. Global centrality measures re-
quire complete topological information for their computation,
whereas local centrality measures only require partial topo-
logical information from neighboring nodes. For instance,
acquiring shortest path information between every node pair
is a global method, and acquiring degree information of every
node is a local method. Some commonly used centrality
measures are:

« Betweenness [9]: betweenness measures the fraction of
shortest paths passing through a node relative to total
shortest paths in the network. Specifically, between-
ness is a global measure defined as betweenness(i) =
Dkt Dt ok ”(’;iiz), where oy is the total number of
shortest paths from % to j and oy;(¢) is the number of
such shortest paths passing through .

o Closeness [10]: closeness is a global measure of geodesic
distance of a node to all other nodes. A node is said
to have higher closeness if the sum of its shortest path
distance to other nodes is smaller. Let p(i, j) denote the
shortest path distance between node 7 and node j in a
connected graph. closeness(i) = 1/3 .y, is; p(4, j).

« Eigenvector centrality (eigen centrality) [11]: eigenvec-
tor centrality is the ith entry of the eigenvector associated
with the largest eigenvalue of the adjacency matrix A. It

is defined as eigen(i) = AL, Zjev A&, where Apax

is the largest eigenvalue of A and ¢ is the eigenvector
associated with Ayax. It is a global measure since eigen-
value decomposition on A requires complete topological




information.

o Degree (d;): degree is the simplest local measure that
accounts for the number of neighboring nodes.

« Ego centrality [12]: consider the (d;+1)-by-(d;+1) local
adjacency matrix of node i, denoted by A(i), and let I
be an identity matrix. Ego centrality can be viewed as a
local version of betweenness that computes the shortest
paths between its neighboring nodes. Since [A?(i)]; is
the number of two-hop walks between k£ and j, and
[A2(i) o (I— A(z))]k] is the total number of two-hop
shortest paths between k and j for all k # j, where o
denotes entrywise matrix product, ego centrality is de-
fined as ego(i) = 2, 25,5, 1/[A%(i) o (I - A(z))]kj

o Local Fiedler Vector Centrality (LFVC) [13]: LFVC
is a new measure that characterizes vulnerability to node
removals. A node with higher LFVC is more important
for network connectivity structure. Let y (the Fiedler
vector) denote the eigenvector associated with the second
smallest eigenvalue p(L) of the graph Laplacian matrix
L, LFVC is defined as LEVC(i) = >,y (i — y5)°.
Although LFVC is a global centrality measure, it can
be accurately approximated by local computations and
message passing using the distributed power iteration
method of [6] to compute the Fiedler vector y.

The aforementioned centrality measures and their properties
ties are summarized in Table I.

III. RESILIENCE OF WESTERN US STATES POWER GRID
TOPOLOGY TO CENTRALITY ATTACKS

Throughout this paper we adopt a greedy node removal
strategy that sequentially removes the node with highest
centrality measure from the remaining largest component.
The centrality measure is recalculated after node removals.
It has been shown in [14] that greedy node removal strategies
can be effective reducers of the largest component size as
compared with batch node removal strategies based on the
same centrality measure. In general, there is no performance
guarantee relating the greedy node removal strategy and the
optimal batch removal strategy. However, using submodularity
of the LFVC measure (i.e., diminishing gain on the upper
bound of resulting algebraic connectivity when nodes with
highest LFVC measures are sequentially removed), it is proved
in [13] that greedy node removal based on LFVC comes
within at least 1 — 1/e of the performance of an optimal
batch node removal strategy, where e is the Euler’s constant.
Therefore one might expect that greedy LFVC attacks can
severely impact network connectivity.

We use the topology of power grid of western US states [7]
to illustrate the application of our centrality measure (LFVC)
for assessing vulnerability to different types of centrality
attacks. The results are shown in Fig. 1. This network contains
4941 nodes and 6594 edges, where nodes represent power sta-
tions and edges represent power lines. More network topology
information can be found in the supplementary file. One can
see from Fig. 1 that an LFVC attack is capable of reducing
the largest component size to roughly 54% of its original size
by removing only 8 nodes from the network. On the other
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Fig. 1. Resilience of network connectivity to different centrality attacks
on the power grid topology of western US states [7]. This network contains
4941 nodes and 6594 edges, where nodes represent power stations and edges
represent power lines. By removing roughly 0.2% of the nodes in the network
based on an LFVC attack, the largest component size is reduced to nearly half
of its original size.

hand, betweenness and closeness attacks require 28 and 31
node removals, respectively, to achieve the same performance.
Equivalently, the LFVC attack requires only 0.2% of the
nodes to be removed to severely disrupt the communications
between nearly half of the nodes in the network. In addition,
degree, eigen centrality, and ego centrality attacks fail to
significantly disrupt the network (less than 6% reduction in
largest component) even when 1% of the nodes are attacked.
By inspecting the adjacency matrix A in [7], it is observed that
the adjacency matrix has apparent blockwise structure where
blocks are densely connected subgrids that are interconnected
by relatively a few inter-subgrid edges. Since the high-degree
nodes are not connected to the inter-subgrid edges and each
subgrid is densely connected, greedy degree attacks do not
result in severe connectivity loss. We conclude that LFVC
attacks do significantly more damage than other types of
centrality attacks. Therefore, LFVC is a more reliable measure
of resilience of the network.

IV. PREVENTIVE APPROACHES TO CENTRALITY ATTACKS

Here we discuss two preventive approaches to protect
against centrality attacks, namely the edge addition method
and the edge rewiring method.

A. Edge addition method

Edge addition is perhaps the most intuitive method for en-
hancing resilience of network connectivity since it adds edges
that are not already present in GG. Let L be the resulting graph
Laplacian matrix after adding an edge (i,5) ¢ £ to G and let
1 be a vector of all ones. Recalling the definition of the graph
Laplacian matrix L in Sec. I, L — L = (e; — e;)(e; — e;)7,
where e; is an all-zero vector except its ¢th entry being 1. The
term (e; — e;)(e; — e;)T corresponds to the graph Laplacian



matrix of the removed edge (¢,7). Since the algebraic con-
nectivity p(L) is the second smallest eigenvalue of L and the
smallest eigenvalue of L is O with the associated eigenvector
1, we have the representation p1(L) = minyj,—1,x71=0 xTLx
[8]. It is proved in [5] that

M(f') > (L) + e (yi — y5)° (D

where y is the eigenvector of p(L) and ¢; > 0 is a positive
constant.

Since algebraic connectivity is a lower bound of node
connectivity and edge connectivity, it is proposed in [5]
that one should iteratively add an edge that maximizes the
quantity (y; — y;)? to the graph. For each iteration, the edge
that maximizes (y; — y;)? maximizes the lower bound on
the resulting algebraic connectivity, and therefore enhances
network resilience to centrality attacks. The edge addition
method serves as the baseline performance comparison to the
proposed edge rewiring method.

B. Edge rewiring method

Edge rewiring aims to rewire the edges in the graph to
enhance the resilience of network connectivity to attacks. In
particular, edge rewiring method does not change the total
number of edges in the graph. The algorithm for the proposed
edge rewiring method is summarized as follows.

Algorithm Edge rewiring method

Input: number of rewires 7, graph G = (V, )

Output: rewired graph G = (V, €)

for i =1 to r do
Compute the second smallest eigenvector y of L
Compute the largest eigenvector z of L
Find (i*, j*) = argmax; jyge(yi — y;)*
Find (k*,0*) = argmax pyee (21 — 2¢)
Edge addition stage: é’: «— EU(i*,5%)
Edge deletion stage: £ < £/(k*, £*)
GG

end for

For each rewire, the edge rewiring method consists of two
stages: an edge addition stage and an edge deletion stage. In
the edge addition stage, similar to the edge addition method,
an edge (i,j) ¢ & that maximizes (y; — y;)? is selected
to maximize the lower bound on the resulting algebraic
connectivity in (1). Let ¢(L) denote the largest eigenvalue
of L and z denote the associated eigenvector of ¢(L). In
the edge deletion stage, an edge (k,¢) € £ that maximizes
(2 — z¢)? is removed. The reason is explained as follows.
Let L denote the graph Laplacian matrix after removing an
edge from G. Since trace(L) — trace(L) = 2, i.e., 2 times
the number of edge removals, and by Cauchy’s eigenvalue
interlacing property [15], (L) > ¢(L) and p(L) > (L), we
have

#(L) > p(L) + (L) — (L) — 2. )

Consequently, for maximum effect, the edge rewiring al-
gorithm should remove the edge that maximizes ¢(L) —
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Fig. 2. Network connectivity of the edge addition method when restricted to
10 greedy node removals on the power grid topology of western US states [7].
The network connectivity can be enhanced from 54% to 80% under LFVC
attacks by adding one edge.
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Fig. 3. Network connectivity of the edge rewiring method when restricted to
10 greedy node removals on the power grid topology of western US states [7].
The proposed edge rewiring method can perform as well as the edge addition
method without introducing additional edges in the network.

d)(i) such that the lower bound on the resulting algebraic
connectivity in (2) is maximized. By definition, ¢(L) =
max||x||,=1 X" Lx, and L—L = (e, —e¢)(ey —e¢)” when the
edge (k, /) € & is removed. Therefore, computing 2Lz, we
have ¢(L) — ¢(L) < (zx — 2¢)?. Moreover, by the eigenvector
property that z is orthogonal to 1 (i.e., zZ'1 = 0), it is easy
to verify that there exists an edge (k,¢) € £ and a constant

cz > 0 such that ¢(L) — ¢(L) > co - (21, — 20).

Note that since the eigenvector y associated with (L) can
be computed in a distributed manner [6], the eigenvector z
associated with ¢(L) can also be obtained using distributed
local computations and message passing.
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Fig. 4. Network connectivity of the edge addition method when restricted
to 20 greedy node removals on the power grid topology of western US states
[7]. 11 additional edges are required to enhance the network connectivity from
29% to 82%.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the edge
addition and edge rewiring methods on protecting the power
grid topology [7] from centrality attacks. When 10 nodes are
removed from the network by LFVC attacks, Fig. 1 shows
that the network connectivity is reduced to 54%. In contrast,
under other types of centrality attacks there is almost no loss
in connectivity when 10 nodes are removed. Fig. 2 illustrates
the effect of edge addition as a preventive approach against
centrality attacks. It is observed that by adding one edge, the
network connectivity can be increased from 54% to 80% under
LFVC attack. Fig. 3 illustrates the proposed edge rewiring
method. Similar to the edge addition method, one edge rewire
is capable of enhancing the network connectivity from 54% to
80%. Thus using the edge rewiring method with only one edge
rewire can protect the network as well as the edge addition
method even though the latter introduces additional edges in
the network.

When 20 nodes are removed from the network, as shown in
Fig. 4, 11 edge additions are required to enhance the network
connectivity from 29% to 82%. In comparison, as shown in
Fig. 5, the proposed edge rewiring method requires only 12
edge rewires to achieve the same performance, which means
that we only need to rewire fewer than 0.4% of edges to make
it resilient to centrality attacks. This performance advantage
is explainable since, for the same number of edge adding or
rewiring actions, edge rewiring changes twice as many edges
in the network as edge addition. A second illustrative example
for an European Internet backbone network is discussed in the
supplementary file.

VI. CONCLUSION AND FUTURE WORK

This paper investigates network resilience to centrality at-
tacks, proposes a new centrality measure for assessing re-
silience, and studies two preventive approaches for protecting
networks against such attacks. The results on the power grid
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Fig. 5. Network connectivity of the edge rewiring method when restricted to
20 greedy node removals on the power grid topology of western US states [7].
The proposed edge rewiring method requires only 12 edge rewires to achieve
the same performance as in Fig. 4, which means that we only need to rewire
fewer than 0.4% of edges to make it resilient to centrality attacks.

of western US states show that the network is particularly
vulnerable to LFVC attacks, and the edge rewiring method
can significantly improve network resilience with only a few
edge rewires. Useful areas for future work are: 1) extension
to time-varying topologies; 2) extension to topologies with
weighted edges; and 3) application to social networks.
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