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Correction to ‘On decentralized estimation with active
queries’

David A. Castañón and Theodoris Tsiligkaridis and Alfred O. Hero
III

Abstract—In this paper, we provide a counterexample to a key
lemma used in the proofs of the convergence of decentralized estimation
algorithms in [2]. We also provide an alternative lemma that establishes
a new proof of the convergence results in the paper [2].

I. INTRODUCTION

The problem of random binary search by a collection of agents
has been studied recently in a number of papers [1], [2], [3]. An
interesting approach, proposed in Tsiligkaridis et al [2], described
a protocol whereby agents do not share their measurements, but
instead perform local processing and exchange probability measures,
referred to as belief densities, of the location of the object of interest.
These belief densities evolve as an average of the Bayesian update
using the agent’s individual measurements and the belief densities
received from the neighbors. The main results of [2] establish that,
as the number of measurements increase, each agent’s belief density
converges to a common density. Furthermore, these belief densities
converge to a distribution that is concentrated at the true object
location.

The purpose of this note is to provide a counterexample to a key
lemma that is used in the proof of the main convergence result in
[2]. After discussing the counterexample, we prove a new lemma that
leads to an alternate proof of the main results in [2].

II. FORMULATION

We follow closely the notation of [2]. Define X be a random
variable denoting the true target location in X = [0, 1], with
B(X ) denoting the Borel-measurable subsets of X . There are M

agents, which seek to locate the target using a random binary search
model introduced in [4] as follows: at discrete times t, each agent
i selects an interval A

i,t

= [0, X
i,t

] and constructs the binary
query “is X 2 A

i,t

”? Agent i receives a noisy binary response
Y

i,t+1 to the query, which is correct with probability 1 � ✏

i

, where
✏

i

< 0.5. We assume the existence of an underlying probability space
(⌦,F ,P) that generates the target location X and the observations
Y

i,t

, i = 1, . . . ,M, t = 1, 2, . . ..
Let Y

t

denote the vector of observations [Y1,t, . . . , YM,t

]T , and
A

t

denote the collection of queries at time t. We assume that the
components of Y

t+1 are conditionally independent given X = x,A
t

,
so that

P(Y
t+1 = y

t+1|x,At

) =
MY

i=1

P(y
i,t+1|x,Ai,t

).

Furthermore, we assume conditional independence of Y
t

across time,
so that

P(y
t+1,ys+1, |x,At

,A
s

) = P(y
t+1|x,At

)P(y
s+1|x,As

),

for all s 6= t.
We define the sequence of event spaces F

t

, t � 1 to be the �-
field generated by the random variables Y1, ...,Yt

, along with the
corresponding queries A1, . . . ,At�1. Note that this is an increasing
sequence (F

t

⇢ F
t+1). Denote by l

i

(y|x,A
i,t

) = P(y
i,t+1|x,Ai,t

)
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the probability that Y
i,t+1 = y given the true location X = x and

the query A

i,t

. Then,

l

i

(y|x,A
i,t

) =
(
(1� ✏

i

)I(x 2 A

i,t

) + ✏

i

I(x /2 A

i,t

), y = 1

✏

i

I(x 2 A

i,t

) + (1� ✏

i

)I(x /2 A

i,t

), y = 0.
(1)

where I(·) is the indicator function. Define Z
i,t

(y) as

Z
i,t

(y) =

Z

x2X
l

i

(y|x,A
i,t

)p
i,t

(x)dx. (2)

Each agent i keeps a probability density p

i,t

(x) on X , which
is its belief density on the location X of the target. Initially, each
agent knows p

i,0(x), which is assumed to be strictly positive on
[0, 1]. At each time t = 0, 1, . . ., agent i selects its query point
X

i,t

to be the median of its belief density, and generates query A

i,t

to collect observation Y

i,t+1 with value y

i,t+1.With such choice of
query points, it is shown in [2] that Z

i,t

(0) = Z
i,t

(1) = 0.5 for
all i = 1, . . . ,m, t � 0. The belief densities evolve over time as
observations are collected by the agents according to the following
social learning update rule

p

i,t+1(x) = a

i,i

p

i,t

(x)
l

i

(y
i,t+1|x,Ai,t

)
Z

i,t

(y
i,t+1)

+
MX

j=1,j 6=i

a

i,j

p

j,t

(x), (3)

where a

ij

are non-negative coefficients with a

i,i

> 0 andP
M

j=1 ai,j

= 1. The matrix A is a stochastic matrix, called the social
interaction matrix, which we assume is irreducible, corresponding to
a single strongly connected class of agents.

The evolution (3) can be summarized in vector form as in [2]:

p
t+1(x) = (A+D

t

(x))p
t

(x), (4)

where D
t

(x) is a diagonal matrix with elements

[D
t

(x)]
i,i

= a

i,i

✓
l

i

(y
i,t+1|xt

, A

i,t

)
Z

i,t

(y
i,t+1)

� 1

◆
.

Note p
t

(x) is measurable with respect to the event space F
t

.
With this notation, Lemma 1 in [2] claims the following:
Lemma 1: [2] For any B 2 B(X ), we have

E
⇢Z

B

D
t

(x)p
t

(x)dx

����Ft

�
= 0. (5)

We provide a counterexample to the above lemma below. Assume
two agents (M = 2) with uniform initial belief densities p1,0(x) =
p2,0(x) = 1. Assume the true density of X is also uniform in [0, 1].
Let ✏1 = ✏2 = 0.25. Then,

P(y
i,t+1|x,Ai,t

) =

(
1
2I(yi,t+1 = 1) + 1

4 x 2 A

i,t

1
2I(yi,t+1 = 0) + 1

4 x /2 A

i,t

Let A =

✓
0.5 0.5
0.5 0.5

◆
.

According to the algorithm above, the medians are X1,0 = X2,0 =
0.5, leading to queries A1,0 = A2,0 = [0, 0.5]. Assume that the
resulting measurements are y1,1 = y2,1 = 1. Then, using (3), we
obtain

p1,1(x) =
5
4
I(x 2 [0, 0.5]) +

3
4
I(x 2 [0.5, 1])

p2,1(x) =
5
4
I(x 2 [0, 0.5]) +

3
4
I(x 2 [0.5, 1]).
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The event space F1 is generated by actions and measurements
{A1,0 = A2,0 = [0, 0.5], y1,1, y2,1}. Using Bayes’ rule, the con-
ditional probability density p(x|A0, y1,1 = y2,1 = 1) is

p(x|A0,y1,1 = y2,1 = 1) =
9
5
I(x 2 [0, 0.5]) +

1
5
I(x 2 (0.5, 1]).

At time t = 1, the new queries are A1,1 = A2,1 = [0, 0.4], based on
the medians for p1,1(x), p2,1(x), so that Z

i,1(yi,2) = 0.5. Note that
these do not correspond to the median of the true probability density
p(x|A0, y1,1 = y2,1 = 1). To show that the conclusion of the lemma
is incorrect, let B = [0, 0.4] also. Then,
Z

B

[D1(x)]1,1p1,1(x)dx = 0.5

Z

B

[2l(y1,2|x,A1,1)� 1]p1,1(x)dx

= 0.5

Z 0.4

0

[2l(y1,2|x,A1,1)� 1]
5
4
dx

=
5
8

Z 0.4

0

[I(y1,2 = 1)� 1
2
]dx

=
1
4
I(y1,2 = 1)� 1

8
,

because B = A1,1 = A2,1. For the event F ⇢ F1 generated by
y1,1 = y2,1 = 1, we have

P(y1,2 = 1|F,A1,1) =
Z 1

0

I(y1,2 = 1)P(y1,2 = 1|x, F,A1,1)p(x|F )dx

=
9
5
· 2
5
· 3
4
+

9
5
· 1
10

· 1
4
+

1
5
· 1
4
· 1
2
=

108 + 9 + 5
200

=
122
200

.

E
⇢Z

B

[D1(x)]1,1p1,1(x)dx

����F
�

=
1
4
[P(y1,2 = 1|F,A1,1)�

1
2
]

=
1
4
· 22
200

=
11
400

6= 0.

This contradicts the Lemma. The proof in [2] used the belief densities
p1,1(x) and p2,1(x) instead of p(x|F1) in computing the conditional
expectation in (5), leading to the erroneous conclusion. The essence
of the counterexample is to construct a situation where the local
beliefs p

k,1(x) differ from the centralized conditional probability
p(x|F1), so that the agents do not pick an accurate estimate of the
median region. This situation is generic in these cases, so almost
any choice of numbers in the above example would result in a
counterexample. Note that Lemma 1 was needed for the proof of
Lemma 2 in [2], so that lemma is also incorrect.

We establish a different lemma that can be used to prove the
main results of [2] following the arguments in [5]. First, we define
a different filtration F 0

t

, consisting of the event space generated
by the random variables X,Y1, . . . ,Yt

and the associated queries
A0, . . . ,At�1. Note that this filtration includes knowledge of X . Let
P

t

(B) =
R
B

p
t

(x)dx. Since F
t

⇢ F 0
t

, P
t

(B) is measurable with
respect to F 0

t

. The new lemma is:
Lemma 2: Let B be a Borel set in B(X ). Then, there exists a

positive vector v such that

E{vTP
t+1(B)|F 0

t

} � vTP
t

(B).

Furthermore, lim
t!1 vTP

t

(B) exists almost surely.
Proof: As in [2], select v as a strictly positive left eigenvector of the
social interaction matrix A corresponding to the eigenvalue 1. Such
eigenvector exists by the connectivity assumptions among the agents

in [2] that guarantee that the interaction matrix A is an irreducible
stochastic matrix. Then, by (3),

vTP
t+1(B) = vT

Z

B

p
t+1(x)dx

= vTA

Z

B

p
t

(x)dx+ vT

Z

B

D
t

(x)p
t

(x)dx

= vT

Z

B

p
t

(x)dx+ vT

Z

B

D
t

(x)p
t

(x)dx.

Using the definition of D
t

(x) and Z
i,t

(y) = 0.5, we get

E

⇢Z

B

[D
t

(x)]
i,i

p

i,t

(x)dx

����F
0
t

�

= a

i,i

Z

B

p

i,t

(x)E{[2P(y
i,t+1|x,Ai,t

)� 1]|F 0
t

}dx.

Since the function 1/x is convex for non-negative x, Jensen’s
inequality yields

E

�
2P(y

i,t+1|x,Ai,t

)|F 0
t

 
�

E

⇢
1

2P(y
i,t+1|x,Ai,t

)

����F
0
t

���1

.

Using the conditional independence assumptions, since F 0
t

includes
X as a generator, we obtain P(y

i,t+1|F 0
t

) = P(y
i,t+1|x,Ai,t

). Thus,

E

⇢
1

2P(y
i,t+1|x,Ai,t

)

����F
0
t

�

=
1X

yi,t+1=0

1
2P(y

i,t+1|x,Ai,t

)
P(y

i,t+1|x,Ai,t

) = 1.

This implies
Z

B

p

i,t

(x)E{[2P(y
i,t+1|x,Ai,t

)� 1]|F 0
t

}dx � 0,

for every i, so

E

⇢
vT

Z

B

D

t

(x)p
t

(x)dx

����F
0
t

�
� 0.

The above inequality establishes that vTP
t

(B) a submartingale with
respect to the filtration F 0

t

, bounded above by the L1 norm of vT ,
and hence it converges almost surely, establishing the Lemma.

Lemma 2 is sufficient to establish the rest of the results in [2]. Let
⇠

t

(B) = e

vTPt(B). Then,

E{⇠
t+1(B)|F 0

t

} = E[ev
TPt+1(B)|F 0

t

]

� e

E{vTPt+1(B)|F0
t} � e

vTPt(B) = ⇠

t

(B),

so ⇠

t

(B) is a non-negative submartingale that is bounded by e

kvk1 ,
so it converges almost surely, as required in the proof of Lemma 3
in [2], which provides the foundation for the remaining proofs in the
paper.
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