
Cram�er-Rao Lower Bounds for Biased Image ReconstructionJe�rey A. Fessler and Alfred O. HeroUniversity of MichiganAnn Arbor, Michigan 48109-0552ABSTRACTSince image reconstruction and restoration are ill-posedproblems, unbiased estimators often have unacceptablyhigh variance. To reduce the variance, one introducesconstraints and smoothness penalties, which yields biasedestimators. This bias precludes the use of the classicalCram�er-Rao (CR) lower bound for the variance of an un-biased estimator. This paper presents a uniform bound forminimum variance subject to a bias gradient constraint.Since the bound is independent of any estimator, one canexplore the fundamental tradeo� between bias and vari-ance in ill-posed problems. We apply the bound to a lin-ear Gaussian model, and demonstrate the optimality of asimple penalized least-squares estimator.I. BIASED CR BOUNDSLet Y be a random vector whose density f(y; �) dependson a vector parameter � of length p. The Fisher informa-tion of Y for � is the p� p matrixF(�) = Ef�r2 log f(Y; �)g:Let �̂ = �̂(y) be an estimator for �. The bias of �̂ isb(�) = Ef�̂g � � = Z �̂(y)f(y; �) dy � �:A. Ordinary CR BoundThe classical CR bound [1] for the minimum variance ofan estimator with bias b(�) is given by:Covf�̂g � (I+rb(�))0F+(�)(I +rb(�));where 0 denotes matrix transpose, I is the p � p identitymatrix, F+ is the Moore-Penrose inverse of F, and r de-notes the row gradient operator. This bound is of verylimited use if one hopes to compare a broad class of es-timators, rather than just those that happen to have thebias gradient rb(�).This work was supported in part by a DOE Alexander Hollaen-der Postdoctoral Fellowship, DOE Grant DE-FG02-87ER65061, andNIH Grants CA54362, CA52880, and CA60711.

B. Uniform BoundSince all regularized estimators entail a tradeo� betweenbias and variance, we would like to know how much onecan reduce the variance by introducing some given amountof bias. As we describe later, it is advantageous to con-strain the bias gradient rather than the bias itself. In [2], a\uniform" CR bound on the variance of �1 was derived fornonsingular Fisher information matrices. We generalizethat derivation here by allowing singular Fisher informa-tion matrices. This is important since image reconstruc-tion problems are often underdetermined (i.e., when thenumber of image pixels to be estimated is greated thanthe number of measurements). Note however that F willalways be nonnegative de�nite [3].For simplicity, we consider only the �rst component �1,and de�ne the bias gradient column vectorg(�) = r0b(�)e1;where e1 is the �rst unit vector of length p. We constrainthe magnitude of the bias gradient by:kg(�)kC � �; (1)where kgk2C = g0Cg. We assume C is positive de�nite.Consider the following sequence of inequalities:Varf�̂1g � (e1 + g(�))0F+(e1 + g(�))� ming(�) : kg(�)kC��(e1 + g(�))0F+(e1 + g(�))� mind : kdkC��(e1 + d)0F+(e1 + d):The constrained minimization over d can be solved usinga Lagrange multiplier, yielding the (unique) solution:d = 8<: �e1;  = 00;  =1�(C + F+)�1F+e1;  2 (0;1) ; (2)where  = (�) is the solution tod0Cd = �2:De�ningB1(�; �) = (e1 + d(�))0F+(�)(e1 + d(�));1



we see then that B1(�; �) is a uniform lower bound onthe variance of �1 for all estimators satisfying the con-straint (1) on the magnitude of the bias gradient.In general, computing the uniform bound for any par-ticular � is less informative then examining the graph(�2; B(�; �)) as � varies over [0; 1]. Since there is a one-to-one relationship between � and the Lagrange parameter ,in the sequel we typically ignore � and examine the graph(d0Cd ; B()) whereB() = (e1 + d)0F+(e1 + d ):As  varies from 0 to 1, the bound B() varies from 0to F+, whereas the magnitude of the bias gradient variesbetween 1 and 0. One can show from (2) thate1 + d = (I + �1C�1F+)�1e1;soB() = e01(I+ �1F+C�1)�1F+(I + �1C�1F+)�1e1;(3)and d0Cd = k(C + F+)�1e1k2C: (4)C. SymmetrySince a Fisher information matrix F is symmetric non-negative de�nite, it is diagonalized by some orthonormalmatrix V. Let F = V�V0where � is diagonal with the eigenvalues of F. ThusF+ = V�+V0;where �+ is diagonal with entries that are zero where �is zero and the reciprocal of � otherwise. Assume that Ccan also be diagonalized by V:C = V
V0(this is trivially true when C = I). Then from (2)d = �V(
 + �+)�1�+q (5)and e1 + d = �V(I + �1
�1�+)�1q; (6)where q = V0e1 is the �rst column of V0. Substituting (5)and (6) into (3) and (4) and commuting the diagonal ma-trices: B() = q0(�1I+
�)�2�
2qand d0Cd = q0(
 +�+)�2
(�+)2q:
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nFigure 1: Canonical bias gradient versus standard devia-tion graph.Let �k denote the diagonal entries of �, and !k the diag-onal entries of 
, for k = 1; : : : ; p. ThenB() = pXk=1 q2k �k!2k(�1 + !k�k)2 ; (7)d0Cd = Xk:�k 6=0 q2k !k(1 + !k�k)2 : (8)From (7) and (8), we see that the bias-variance graph(d0Cd ; B()) is the weighted sum of p graphs of the form� 1(1 + !�)2 ; !�(�1 + !�)2 ;�for � 6= 0, where the weights are !kq2k. The basic form isshown in Figure 1. Note the steep slope at zero: a smallbias can signi�cantly reduce variance. We refer to thisgraph as the canonical bias-variance curve.Note that if F is circulant, then V is the discrete Fourierbasis, q2k = 1=p, and each �k is the kth Fourier amplitude.II. LINEAR GAUSSIAN MODELIn the remainder we focus on the linear Gaussian model:Y � N (A�;�);where � 2 <p is the parameter to be estimated, and �is a positive-de�nite noise covariance matrix. The Fisherinformation of Y for � is given byF = A0��1A:A. Linear EstimatorsDe�ne the following SVD:��1=2A = U�V0;



where U 2 <n�n, V 2 <p�p, � 2 <n�p. Then the Fisherinformation is F = A0��1A = V�0�V;so � = �0�, i.e. �k = �2k. Any linear estimator for � canbe written: �̂ = LY = VWU0��1=2Ywhere W 2 <p�n. The bias of this estimator isb = VWU0��1=2A� � �= V(W�� I)V0�:Thus the bias gradient isg = V(W� � I)0V0e1;so g0Cg = k
1=2(W�� I)0qk2:The covariance of this estimator isL�L0 = VWW0V0;so the variance of �̂1 ise01VWW0V0e1 = kW0qk2:Note to minimize variance we would like W to be small,but to minimize bias we would like W� � I to be small.These conicting objectives epitomize the bias-variancetradeo�.If the elements ofW are zero, except for the �rst p� pblock being diagonal with entries fwkgpk=1, then for thislinear estimator the graph of (bias gradient, variance) is: pXk=1 q2k!k(�kwk � 1)2; pXk=1q2kw2k! : (9)In particular, if wk = !k�k�1 + !k�2k ; (10)then the graph (9) has the same form as the bound (7)-(8),except that the bias term (8) only sums over nonzero �k.Thus if the Fisher information matrix is nonsingular, thenthe linear estimator with weights given by (10) achievesthe uniform bound (7). We show below that this corre-sponds to a penalized least-squares estimator. Apparentlythe choice (10) is the only choice that achieves the bound,thus the penalized least-squares estimator is in some senseoptimal. In particular, the penalty method appears to besuperior to the \truncated SVD" estimator that has beenpopular in imaging problems.

B. Penalized Weighted Least SquaresA natural regularized estimator for the Gaussian imagereconstruction problem is the following penalized weightedleast-squares estimator:�̂ = argmin� (y �A�)0��1(y �A�) + ��0R�;whereR is a symmetric nonnegative de�nite regularizationmatrix. We assume F + �R is positive de�nite, which isreasonable if R is to be very useful. In the absence ofconstraints, the solution to this is given by:�̂ = (F+ �R)�1A0��1y 4= Ly;where F = A0��1A. Recall that F = V�V0, and letDR = V0RV:Then �̂ = V(� + �DR)�1V0A0��1y:The covariance of this estimator is:Covf�̂g = (F+ �R0)�1F(F + �R)�1= V(� + �D0R)�1�(� + �DR)�1V0;so Varf�̂1g = q0(� + �D0R)�1�(� + �DR)�1q;The bias is b = (LA� I)�;thus the bias gradient vector for �1 isg = (LA� I)0e1 = (F(F + �R)�1 � I)e1:Therefore g = ��R(F + �R)�1e1= ��VDR(� + �DR)�1q;so g0Cg =q0(D0R + ��1�)�1D0R
DR(DR + ��1�)�1q:In particular, if DR is diagonal with entries rk, thenVarf�̂1g = pXk=1 q2k �k(�rk + �k)2 (11)and g0Cg = pXk=1 q2k !kr2k(rk + ��1�k)2 : (12)Thus, ifR = C�1 and � = �1, then comparing (7) and(8) with (11) and (12) we see that this estimator achievesthe uniform bound if F is nonsingular. If F is singular,it may be that the uniform bound is unachievable. Notethat the results in [2] on achievability are only for the casewhere F is nonsingular. We conjecture that tighter boundsmay exist for the case where F is singular.
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Figure 2: Comparison of truncated series estimation andpenalized weighted least squares to uniform bound for adeconvolution problem.III. EXAMPLETo compare the performance of a penalized least-squaresestimator to the truncated series estimator and to the uni-form bound, we consider a 1-D deconvolution problem.Assume� = I, the systemA is circulant with kernel (0.15,0.7, 0.15), and n = p = 64. Figure 2 compares the calcu-lated variances for speci�ed bias gradients over a range of, �, and n. For a given bias gradient magnitude, the pe-nalized estimator achieves the bound, whereas truncatedseries estimator does not. For more complicated nonlinearestimators, one has to perform Monte Carlo simulations toevaluate the performance for comparison with the bound.This type of analysis should be very useful for examiningestimator performance.IV. BIAS GRADIENTOne might think it would be preferable to have a bound onthe minimum variance subject to a magnitude constrainton the bias vector, rather than on the bias gradient. Toillustrate why such a bound does not exist, consider themodel Y � N (�; 1). Applying the uniform bound, one�nds that for a bias gradient magnitude constraint of �,the minimumvariance for an estimate of � is (1��)2. Nowconsider the \shrinkage" estimator �̂ = ��+(1��)Y . Thevariance of �̂ is (1 � �)2, and the bias is �(� � �), whichcould be as small as 0 if � happened to equal �. Thus, themagnitude of the bias tells us nothing about the variance.On the other hand, the magnitude of the bias gradientfor this estimator is j�j, which immediately tells us (fromthe uniform bound) that if � = �, the shrinkage estimatorachieves the uniform bound.Although the bias gradient may not be an intuitive

object in general, in image reconstruction or restorationproblems, the bias gradient is closely related to the bias ofa point source. (This is expected, since imaging systemsinvolve tradeo�s between resolution and noise.) To illus-trate, recall that for a linear estimator the bias gradientis: g = V(W�� I)0V0e1;and the bias is: b = V(W� � I)V0�:If (W�)0 = (W�), which is usually the case, then onecan rewrite the bias gradient as:g = V(W�� I)V0e1:Therefore, if the image is a point source, i.e. if � = e1,then the bias vector equals the bias gradient vector. Formany nonlinear estimators, we conjecture that a similarrelationship can be established using perturbation analysisof a point source in a uniform image.V. DISCUSSIONWe have analyzed a uniform bound on the variance forestimators whose bias gradient satis�es a magnitude con-straint. For a linear Gaussian model with invertible Fisherinformation, a penalized least-squares estimator achievesthe bound. Further study of the important underdeter-mined case is ongoing.REFERENCES[1] J. D. Gorman and A. O. Hero. Lower boundson parametric estimators with constraints. IEEETransactions on Information Theory, 36(6):1285{1301,November 1990.[2] A. O. Hero. A Cramer-Rao type lower bound for essen-tially unbiased parameter estimation. Technical Re-port 890, Lincoln Laboratory, MIT, January 1992.[3] E. L. Lehmann. Theory of Point Estimation. Wiley,New York, 1983.VI. ACKNOWLEDGEMENTThe authors thank M. Usman for helpful discussions.Comments or questions to fessler@umich.eduwould be wel-comed.


