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Abstract—This paper considers the estimation of graphical model
parameters with distributed data collection and computation. We first
discuss the use and limitations of well-known distributed methods for
marginal inference in the context of parameter estimation. We then
describe an alternative framework for distributed parameter estimation
based on maximizing marginal likelihoods. Each node independently
estimates local parameters through solving a low-dimensional convex
optimization with data collected from its local neighborhood. The local
estimates are then combined into a global estimate without iterative
message-passing. We provide an asymptotic analysis of the proposed
estimator, deriving in particular its rate of convergence. Numerical ex-
periments validate the rate of convergence and demonstrate performance
equivalent to the centralized maximum likelihood estimator.

I. INTRODUCTION

Graphical models play a prominent role in distributed statistical
inference. Their parsimonious structure allows for efficient and dis-
tributed inference of marginal distributions using well-known and
well-studied message-passing algorithms such as belief propaga-
tion [1]. Less well-studied however in the distributed context is the
equally important task of estimating the parameters of a graphical
model from data. The goal of this work is to develop similarly
distributed methods for model parameter estimation.

This paper focuses on Gaussian graphical models (GGM) with
known graph structure, i.e, the pattern of edges is known. Our
approach can also be extended to general graphical models, including
discrete distributions. In the Gaussian case, parameter estimation
essentially reduces to (inverse) covariance estimation, and knowledge
of the edge pattern imposes sparsity constraints on the inverse
covariance matrix, also known as the concentration or precision
matrix. While the resulting maximum likelihood (ML) parameter
estimation problem is a convex optimization, centralized algorithms
as in [2] become impractical in large networks where data collection
and computational resources are decentralized and communication is
also constrained.

A natural approach toward distributed parameter estimation is to
leverage the methods for distributed marginal inference mentioned
above, such as (loopy) belief propagation and its extensions. The idea
is to replace the objective function and gradient in the ML estimation
problem with approximations that can be computed through iterative
message-passing. In Section II, we elaborate on the use of distributed
marginal inference techniques for parameter estimation and discuss
their limitations. In particular, loopy belief propagation (LBP) may
fail to converge or give good marginal estimates in many cases, and
when it does converge, the resulting parameter estimates may be
biased because of the required approximations.
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In Section III, we describe an alternative framework for distributed
estimation of GGM parameters based on marginal likelihoods,
first introduced in [3]. This framework generalizes some previous
work based on pseudo-likelihoods [4], [5]. A marginal likelihood
is associated with each node and its surrounding neighborhood.
Local parameter estimates are obtained by independently maximizing
convex relaxations of these marginal likelihoods given local data
from the neighborhoods. The local estimates are then combined in
a non-iterative fashion to produce the global parameter estimate. We
characterize the asymptotic behavior of the proposed estimator, in
particular its rate of convergence to the true parameter in terms of
mean squared error (MSE). Numerical experiments in Section IV
confirm the rate of convergence and demonstrate that a version of the
proposed estimator with two-hop local neighborhoods can match the
performance of the much more expensive centralized ML estimator.
With respect to [3], the main contributions of the current paper are
the discussion of the inadequacy of distributed marginal inference for
parameter estimation in Section II, the derivation of the asymptotic
rate of convergence in Section III-C and its numerical validation in
Section IV.

II. BACKGROUND

We begin by providing background on graphical models and their
statistical inference. We refer the reader to [1] for a detailed treatment.

A. Graphical models

Consider a p-dimensional random vector x following a graphical
model with respect to an undirected graph G = (V,E), where V =
{1, . . . , p} is a set of nodes corresponding to elements of x and E is
a set of edges connecting nodes. The vector x satisfies the Markov
property with respect to G if for any pair of nonadjacent nodes in G,
the corresponding pair of variables in x are conditionally independent
given the remaining variables.

If the vector x follows a multivariate Gaussian distribution, the
corresponding model is called a Gaussian graphical model (GGM).
We assume without loss of generality that x has zero mean. Then
the probability density function can be written in canonical form in
terms of the concentration matrix J as follows:

p(x;J) = (2π)−p/2(detJ)1/2 exp

(
−1

2
xTJx

)
. (1)

The Markov property manifests itself in a simple way through the
sparsity pattern of J:

Ji,j = 0 for all (i, j) /∈ E. (2)



B. Margianl Inference for GGMs

Given a joint distribution as in (1), a fundamental task is to infer
the marginal distribution of a subset of variables, which involves
marginalization of the remaining variables, possibly conditioned on
observations of certain variables. In the discrete case, the computa-
tional cost of exact inference in generally structured graphical models
grows exponentially in the graph treewidth. Therefore, exact inference
is only considered tractable for graphs with small numbers of nodes or
with special structures, such as trees and “thin” low-treewidth graphs.
In the Gaussian case, marginal inference amounts to estimating the
mean parameters, i.e. the covariance matrix Σ = J−1. The cost of
this global matrix inversion is cubic in the number of variables in
general graphs.

Due to the expensive cost of centralized marginal inference, dis-
tributed message-passing algorithms, such as loopy belief propagation
(LBP), are of particular interest. It can be shown that LBP can
be seen as an iterative fixed point algorithm for finding stationary
points of the so-called Bethe free energy. For Gaussian models,
many sufficient conditions exist for Gaussian LBP to converge, such
as diagonal dominance, walk-summablility, pairwise normalizablility,
etc. [6]. However, when these sufficient conditions do not hold, the
Bethe free energy can be proven to be unbounded from below in many
settings [7], which leads to divergent Gaussian LBP, or convergence
to degenerate, unnormalized marginal distributions. A recent work [8]
proposes to use the method of multipliers to improve the convergence
behavior of Gaussian LBP when the free energy is well-behaved.
However, the unboundedness of the Bethe free energy in continuous
models remains a difficult problem for inference. As we will discuss
in Section II-D, this difficulty also prevents the direct application
of many well-studied message-passing algorithms for the task of
parameter estimation.

C. Maximum Likelihood Parameter Estimation for GGMs

A different and equally important task is to learn the parameters of
a graphical model from sample data. For Gaussian graphical models
this reduces to estimating the non-zero elements of the concentration
matrix J. These elements are indexed by Ẽ, the union of the edges
and pairs corresponding to diagonal elements, Ẽ := E ∪{(i, i)}pi=1.

When all the data are accessible, the centralized global maximum
likelihood (GML) estimation problem can be formulated as [1]

ĴGML = argmin
J�0

〈Σ̂,J〉 − log detJ

s.t. Jj,k = 0 ∀ (j, k) /∈ Ẽ.
(3)

where Σ̂ = 1
T

∑T
t=1 x(t)x(t)T is the sample covariance matrix and

x(1), . . . ,x(T ) are i.i.d. samples of x. The GML problem (3) is a
convex semidefinite program (SDP) with respect to JẼ and various
gradient-based algorithms can be applied to solve this problem, many
of which have specialized implementations on graphs, e.g. iterative
proportional fitting (IPF) [1], chordally-embedded Newton’s method
[2], etc. However, as we will discuss in more details in the following
section, the main drawback of these methods is the computational
and communication complexity when implemented in a distributed
network setting.

D. Diffculty of Distributed Estimation via LBP

The standard gradient descent algorithm for solving problem (3)
has the following update rule at each iteration:

Ĵ
(t+1)

Ẽ
← Ĵ

(t)

Ẽ
+ γ · ∇`(Ĵ(t))Ẽ

= Ĵ
(t)

Ẽ
+ γ · (Σ̂Ẽ − (Ĵ(t))−1

Ẽ
),

(4)

where γ is the step-size. The obvious difficulty is the global matrix
inversion involved in computing the gradient at each step, which is
intractable in a general distributed network setting.

To obtain a distributed method for estimating GGM parameters,
it is natural to consider distributed marginal inference techniques,
such as LBP, for approximating the gradient in (4). Essentially this
approach optimizes the Bethe surrogate likelihood function [1]. Un-
fortunately, such parameter learning based on approximate marginal
inference does not guarantee a convergent algorithm, and more impor-
tantly, it in general yields a biased parameter estimator. As mentioned
in Section II-B, when the GGM does not satisfy the conditions that
ensure convergent and stable LBP inference, the computation of the
gradient can be infeasible or result in incorrect values. Even if the
overall estimation algorithm is convergent, [9] shows that many MRF
models are in principle not learnable through LBP inference, which
implies that the estimator is inevitably biased. Similar results also
hold when using many other approximate inference techniques, for
example, tree-reweighted BP [10].

III. DISTRIBUTED ESTIMATION FOR GGMS BASED ON

MARGINAL LIKELIHOODS

Given the difficulties of plugging-in well-established distributed
marginal inference techniques for the task of parameter estimation,
we describe a novel approach to address this problem motivated by
many network applications. We assume that the topology of the graph
G, which encodes statistical dependences, coincides with the topology
of internode communication. Each node collects all the data samples
from within a neighborhood and computes a local parameter estimate.
A global estimate of the parameter (e.g. precision matrix J) is then
formed by combining these local estimates.

A. Marginal Likelihood Maximization

We consider estimating local parameters by maximizing marginal
likelihood functions in neighborhoods around each node i. Define the
index set for immediate neighbors of node i as Ii := {j | (i, j) ∈ E},
and consider a neighborhood indexed by a set Ni containing at least
the node i itself and its immediate neighbors Ii. Let K denote
the concentration matrix corresponding to the marginal distribution
over the variables {xj , j ∈ Ni} in the neighborhood, and let
Si := Σ̂Ni,Ni = 1

T

∑T
t=1 xNi(t)xNi(t)

T be the marginal sample
covariance matrix.

The maximum marginal likelihood (MML) estimation problem in
neighborhood Ni can be formulated as:

K̂i,MML = argmin
K,J�0

〈Si,K〉 − log detK

s.t. K =
[(

J−1)
Ni,Ni

]−1

,

Jj,k = 0 ∀ (j, k) /∈ Ẽ,

(5)

where the first constraint represents the marginalization relationship
between K and the global precision matrix J, and the second line of
constraints reflects the global sparsity constraints.

The difficulty with the MML approach is that problem (5) is in
general a non-convex optimization with respect to K and J. The non-
convexity arises from the coupling of the nonlinear marginalization
constraint linking K to J and the sparsity constraints on J. As a
surrogate, we derive and consider a convex relaxation of the MML
estimation problem.
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(a) A general graph and two-hop
neighborhood

i i

(b) Local relaxations (one-hop (left)
and two-hop (right))

Fig. 1. Illustration of defined sets and local relaxation. In (a) we indicate
the two-hop neighborhood N for node i with a dashed contour. The buffer
set variables xB and the protected set variables xP (excluding node i itself)
are colored blue and red, respectively. We illustrate the one-hop and two-hop
local relaxations in (b). The dashed red lines in (b) denote the fill-in edges
due to relaxation. These illustrations also appear in [3].

B. Convex Relaxation of MML

We apply the Schur complement identity to the marginalization
constraint in (5), yielding

K = JN ,N − JN ,NC ·
[
JNC ,NC

]−1 · JNC ,N , (6)

where NC is the complementary set to N , and we have dropped
the subscript i to simplify notation. Define the buffer set B ⊂ N as
the set of all variables in N that have immediate neighbors in the
complement NC ,

B := {j | j ∈ N and Ij ∩NC 6= ∅}. (7)

The difference set between N and B is referred to as the protected
set P . The buffer and protected sets are illustrated in Figure 1a. Due
to the Markov property, we have JP,NC = 0. Decomposing N into
B and P then reveals the sparsity pattern of K from (6):

KP,P = JP,P , KP,B = JP,B, (8)

KB,B = JB,B − JB,NC

[
JNC ,NC

]−1
JNC ,B. (9)

An important observation from (8) is that, in the rows and columns
indexed by the protected set P , the sparsity pattern of JN ,N is
entirely preserved and the local parameters are equal to the global
ones. On the other hand, the sparsity pattern in the “buffer submatrix”
KB,B is in general modified due to the fill-in term, i.e., the second
term in (9).

Based on these observations, we now specify a relaxed set of
constraints on the marginal concentration matrix K. First denote
the set of all local edges that are not affected by the fill-in term
in (9) as EProt := Ẽ ∩ {{P × P} ∪ {P × B} ∪ {B × P}}, where
the superscript stands for “protected”. We then add to EProt all index
pairs B×B that could potentially be affected by fill-in in (9), resulting
in a relaxed edge set R (see Figure 1b for illustrations):

R = EProt ∪ {B × B}. (10)

In light of (8) and (9), any feasible marginal concentration matrix K
for the MML estimation problem (5) is guaranteed to be supported
only on the set R. Therefore we can relax the feasible set and
formulate the following relaxation of the original MML estimation
problem (5) at each node i:

K̂i,Relax = argmin
K�0

〈Si,K〉 − log detK

s.t. Kj,k = 0 ∀ (j, k) /∈ R.
(11)

The above relaxed MML problem is a convex optimization with
respect to KR and has the same form as the global MLE problem
(3) but with much lower dimensions in general.

After solving the relaxed MML estimation problems as surrogates
to estimate local parameters, a global estimate of the concentration
matrix can then be constructed by extracting a subset of parameters
from each local estimate and concatenating them. Specifically, we
extract the local parameter estimates indexed by Li := {(j, k) ∈
Ẽ | j = i}, i.e., the non-zero entries in the ith row of J. We
refer to the parameters indexed by Li as the row parameters for
node i. From (8), the marginal and global concentration matrices are
guaranteed to share the same parameters in Li. Therefore our final
global estimate of J is formed by fusing local estimates from solving
each local problem (11):

ĴRelax
Li

= K̂i,Relax
Li

, for i = 1, . . . , p. (12)

Note that this construction of the global estimate ĴRelax does not
guarantee symmetry. However, symmetrization can be done through
simple local averaging along each edge. Experiments show that this
single-step averaging is sufficient to achieve good performance in
most situations.

C. Asymptotic Analysis

The following theorem states the asymptotic behavior of the
proposed relaxed MML estimator (12).

Theorem 1. The relaxed MML estimator ĴRelax is asymptotically
consistent and normal, with an asymptotic variance (i.e. mean
squared Frobenius error) of 1

T
·
∑p

i=1

∑
j∈Li

[diag
(
F−1

i

)
]j , where

T is the number of samples, diag(·) denotes the diagonal of a matrix,
and Fi is the Fisher information matrix of the relaxed MML problem
in the ith neighborhood (11), which takes the following form [5]:

(Fi)(m,n),(l,k) =


2 ·Σ2

m,l, m = n and l = k

2 ·Σm,k ·Σl,n, m = n, l 6= k or m 6= n, l = k

Σm,k ·Σn,l, o.w..
(13)

Proof: (abbreviated) Consider the following set of sparse positive
semidefinite matrices with respect to a non-zero element set R:
KR := {K | K � 0,K(j,k) = 0, ∀(j, k) /∈ R}. We first note
that, when R is taken to be the relaxed edge set of a neighborhood
as defined in (10), then the true marginal concentration matrix
corresponding to the neighborhood, K∗ = (Σ∗N ,N )

−1, must belong
to the set KR. This can be seen from the fact that the true global
concentration matrix J∗ conforms to the sparsity pattern specified
by Ẽ and from relations (8) and (9). Therefore the proposed relaxed
MML problem (11) is equivalent to a standard ML problem with
respect to a GGM distribution parameterized by matrix K ∈ KR, with
K∗ being the population parameter. Then the asymptotic consistency,
normality and efficiency of the proposed relaxed MML estimator
(with respect to the local problem) all follow from the standard
asymptotic analysis of the ML estimator [11]. In particular, the
variances of the errors achieve their Cramer-Rao bounds, which are
the diagonal elements of the inverse Fisher information matrix F
defined in (13). Finally by extracting and summing the variances
corresponding to the row parameters, we obtain the expression for
the asymptotic mean squared Frobenius error of the proposed global
estimator ĴRelax, as stated in the theorem.
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(a) Normalized MSE for K-NN graphs (p =
500,K = 4)
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(b) Normalized MSE for lattice graphs (p =
20× 20 = 400)
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(c) Normalized MSE for small-world graphs (p = 100, K =
20, β = 0.5)

Fig. 2. Numerical experiments. The true concentration matrix is initialized as: (a) Ji,j = ± exp(−0.5 · di,j), di,j is the Euclidean distance between
two uniformly distributed points in the unit square; (b) Ji.j = min{w, 1}, w ∼ N (0.5, 0.2); (c) Watts-Strogatz model with K(mean degree) = 20, and
parameter β = 0.5. Diagonal loading is added for all models to ensure positive definiteness. The legend in (c) applies to all plots. These plots also appear in
[3].
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Fig. 3. Asymptotic normalized MSE for K-NN graphs (p = 20,K = 4,
Ji,j chosen as in Fig. 2a). The curves denote the theoretical asymptotic limits,
whereas the symbols denote the empirical normalized MSE over 10,000 runs.

IV. EXPERIMENTS

In this section, we provide numerical results to demonstrate the
performance and verify the asymptotic analysis of the proposed re-
laxed MML estimator. We define the local neighborhoods (Ni) based
on a fixed number of communication hops in the network from the
centering node i. We consider one-hop and two-hop neighborhoods,
and compare them with the centralized global ML estimator (GML).

We first verify the asymptotic analysis of the MSE performance
of the proposed estimator (see Fig. 3) using 10,000 randomized runs
sampled from a four-nearest-neighbor graphical model with p = 20

nodes. The empirical normalized MSEs ‖Ĵ−J‖2F
‖J‖2

F
are computed and

compared with theoretical bounds provided by Theorem 1. The
tightness of the bounds is easily seen. The bound for the two-
hop relaxed MML estimator approximates the bound for the GML
estimator closely, which indicates its statistical efficiency.

Lastly we evaluate and compare the non-asymptotic MSE perfor-
mance of the proposed estimator and GML estimator on randomly
generated K-NN, 2-D grid, and small-world graphs. The results
are shown in Fig. 2a-2c. Please refer to the caption for parameter

settings. Results for all types of graphs consistently demonstrate the
improvement of the two-hop estimator over the one-hop one, and
also the closeness between the two-hop estimator and the much more
expensive centralized GML estimator.

V. CONCLUSION

We have presented a distributed MML framework for estimating
the concentration matrix of a Gaussian graphical model, avoiding the
limitations of distributed marginal inference methods such as belief
propagation. We have derived the asymptotic properties of the esti-
mator, in particular its rate of MSE convergence, and demonstrated
empirical performance equivalent to the centralized ML estimator.
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