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Abstract—The Generalized Markov Lemma has been used in
the proofs of several multiterminal source coding theorems for
finite alphabets. An alternative approach to extend this result
to countable infinite sources is proposed. We establish sufficient
conditions to guarantee the joint typicality of reproduction
sequences of random descriptions that have not been necessarily
generated from the product of probability measures. Compared
to existing proofs for finite alphabets, our technique is simpler
and self-contained. It also offers bounds on the asymptotic tail
probability of the typicality event providing a scaling law for a
large number of source encoders.

I. INTRODUCTION

Consider the distributed source coding problem where two
memoryless sources are compressed separately and sent to a
common decoder over rate-limited links. The decoder wishes
to obtain a lossy estimate of the sources with a fidelity crite-
rion. This fundamental problem arises in several applications,
e.g. distributed storage, sensor networks and caching in wire-
less networks. Berger and Tung [1], [2] derived a general inner
bound on its rate-distortion region. Each encoder quantizes its
own observation using a noisy reproduction and these values
are then communicated to the decoder using lossless Slepian-
Wolf compression, which recovers them and thus constructs
the sources estimates. The question of optimality of Berger-
Tung’s inner bound continues to be of great interest. Berger
and Yeung [3] show that the bound is optimal if at least one
of the sources must be reproduced losslessly. Wagner et al. [4]
shown that it is optimal for two-Gaussian sources. Han and
Kobayashi [5] have established direct coding theorems for
several separate encoders. In spite of many works, the exact
characterization of the rate-distortion region still remains open.

The proof of coding theorems for multiterminal source
coding involve two technical results. The one referred to as the
Mutual Packing Lemma [6] that provides necessary conditions
to guarantee the success of joint decoding of all reproduction
sequences at the decoder. The second is a central result that
is referred to as Generalized Markov Lemma (GML), which
guarantees the joint typicality between all involved sequences.
In particular, since encoding is distributed the GML enforces
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two fundamental constraints: i) the test channels must be con-
ditionally independent of each other, and ii) the reproductions
must be formed from the typicality mappings (quantization),
which yields “non-product” probability measures (pms).

The first Markov lemma for “product” pms (memoryless
reproductions) was introduced by Wyner [7] and recently
extended to countable infinite alphabets [8] via a different
notion of typicality. Although most of the literature attributed
the GML for “non-product” pms to [1], the original proof
is given in [2]. This involves a combination of rather so-
phisticated algebraic and combinatorial arguments over finite
alphabets. An alternative proof was also provided in [6] which
strongly relies on a result by Uhlmann [9] used to bound the
probability of the central error event. Based on source coding
and probabilistic arguments of strong typical sets, Han and
Kobayashi [5] have extended the GML to multiple sources
over finite alphabets. By following this approach, Oohama
in [10] derived a GML for scalar Gaussian sources.

In this paper, we develop another alternative approach
that extends GML to countable infinite sources for multiple
source encoders and side information at the decoder. For
this extension we cannot rely on the standard properties of
strong typical sets –in contrast to the proofs in [5], [6]–
We approach this problem via a large deviation analysis
of the multinomial characterization of empirical probability
measures, which allows us to bound the probability of the
relevant typicality event. Our technique is simpler and does not
require external tools. It also offers bounds on the asymptotic
tail of the probability of the typicality event, which provides
us a scaling law for large number of source encoders.

Notations: Boldface letters xn and upper-case letters Xn

are used to denote vectors and random vectors of length
n, respectively. Let X be a countable infinite alphabet and
let σ(X ) be a σ-field, i.e. 2X . Let Λ denote the set of all
probability measures (pm) p on σ(X ). For each n ∈ Z+ let
Πn , {k/n : k = 1, . . . , n}. The empirical pm of a sample
xn ∈ Xn is given by

p̂xn(B) , 1

n

n∑
i=1

1[xi ∈ B], B ∈ σ(X ) . (1)

We regard the n-Cartesian power of (Xn, σ(Xn)) where pnX
is the n-th Cartesian power of pX . Let p and q be pms where



p� q (absolutely continuous), we denote the relative entropy
by D(p‖q) and the total variational distance by ‖p− q‖TV ,
supA∈σ(X ) |p(A)−q(A)|. A RV X with Bernoulli probability
distribution is denoted by Bern

(
pX(X = 1)

)
. Let X , Y and V

be three RVs with pm p. If p(x|y, v) = p(x|y) for each x, y, v,
then they form a Markov chain, which is denoted by X −
−
Y −
− V . The conditional product pm for i.i.d. RVs V n given
Y n is denoted by pnV |Y while a non-product pm is denoted
by pV n|Y n . The set of strong and conditional strong typical
sequences are denoted by Tnδ (V ) and Tnδ (V |yn), respectively.
Let bn = o(an) indicate lim supn→∞ (bn/an) = 0 and bn =
O(an) indicates that lim supn→∞ |bn/an| <∞.

II. BASIC DEFINITIONS AND AUXILIARY RESULTS

We begin with some basic definitions and auxiliary results
which are required to prove the Generalized Markov Lemma
(GML) stated in Section III.

Definition 1 (Joint typical sequences): A vector sequence
(xn1 , . . . , x

n
N ) ∈ Xn1 × · · · × XnN is called (strongly) joint δ-

typical w.r.t. (X1, . . . , XN ) (or simply joint typical) if∥∥p̂xn
1 ···xn

N
− pX1...XN

∥∥
TV
≤ δ , (2)

and p̂xn
1 ···xn

N
stands for empirical pms of tuples (a1, . . . , aN ) ∈

X1×· · ·×XN in (xn1 , . . . , x
n
N ) and p̂xn

1 ···xn
N
� pX1...XN

. The
set of all sequences is denoted by Tnδ (X1, . . . , XN ).

Definition 2 (Conditionally typical sequence): Let xn ∈
Xn. A sequence yn ∈ Yn is called (strongly) δ-typical (w.r.t.
Y ) given xn if ∥∥p̂xnyn − p̂xnpY |X

∥∥
TV ≤ δ , (3)

and p̂xnyn � p̂xnpY |X . Tnδ (Y |xn) denotes the set of all
sequences.

Lemma 1 (Measure concentration): There exists a sequen-
ce ηn = O

(
c−nδ

2
n

)
−−−−→
n→∞

0, for some constant c > 1, s.t.

PnX1X2...XN

(
Tnδn(X1X2 . . . XN )

)
≥ 1− ηn , (4)

provided that nδ2n →∞ as n→∞.
Proof: We are interested in uniform deviations of em-

pirical averages for which we can simply use the bounded
differences technique [11].

Remark 1 (Stirling’s approximation): The following ap-
proximation to the binomial coefficient holds for n large:

1

n
log

(
n

k

)
= H2

(
k

n

)
+O

(
log n

n

)
, (5)

for k ≤ n = 1, 2, . . . where H2(x) denotes the binary entropy
function.

Proposition 1 (Large deviation of Hypergeometric pm):
Let nK ∈ Z+ be a random variable that follows a
Hypergeometric distribution defined by

Pr(nK = nk|m,N,N1, n) =

(
nN1

nk

)(
n(N −N1)

n(m− k)

)/(nN
nm

)
for nk ∈ [1, nm], such that nmax(0,m +N1 −N) ≤ nk ≤
nmin(N1,m), where the parameters are defined as: nN is

the population size; nN1 is the number of success states in
the population; nm is the number of draws; nk is the number
of successes in the nm draws, and n = 1, 2, 3, . . . Then, for
every nk ∈ [0, nm],

1

n
log Pr(nK=nk|m,N,N1, n)=−I(k)+O

(
log n

n

)
, (6)

where the rate function I(k) is defined as

I(k)

N
, H2

(m
N

)
−
[
N1

N
H2

(
k

N1

)
+

(
1− N1

N

)
H2

(
m− k
N −N1

)]
(7)

Furthermore, the rate function I(k) satisfies

I(k) ≥ 2

N

∣∣∣k − E[K]
∣∣∣2 with E[nK] = n

(
mN1

N

)
, (8)

Proof: We apply Remark 1 to each of the terms involved
in Pr(nK = nk|m,N,N1, n) to obtain (6). It remains to
show (8). Observe that I(k) = D(pXY ‖pX × pY ), for two
RVs X,Y ∈ {0, 1} with joint probability distribution pY |XpX
where pX ≡ Bern

(
N1

N

)
and pY |X such that pY |X(Y = 1|X =

1) ≡ Bern
(
k
N1

)
and pY |X(Y = 1|X = 0) ≡ Bern

(
m−k
N−N1

)
.

Using Pinsker’s inequality and by means of standard ma-
nipulations, it is easy to check that

D(pXY ‖pX × pY ) ≥
2

N2

∣∣∣k − E[K]
∣∣∣2 . (9)

This concludes the proof of the proposition.

III. GENERALIZED MARKOV LEMMA (GML):
TWO-ENCODERS AND SIDE INFORMATION

In this section, we present an alternative proof of the
Generalized Markov Lemma (GML) [2], [6] for the case of
two encoders with side information and countable infinite
alphabets. We approach this problem via a large deviation
analysis of the multinomial distribution which allows us to
bound the probability events of the form {p̂Sn ∈ Ω ⊂ Λ}.

Lemma 2 (GML with side information at the decoder):
Let qUnV nXnY nZn = pUn|Xn pV n|Y n pXnY nZn be any
(non-product) probability measures defined on (Un, σ(Un)),
(Vn, σ(Vn)) and (Xn × Yn × Zn, σ(Xn × Yn × Zn)),
respectively, and let (U,X,Z, Y, V ) be random variables
defined on countable infinite alphabets U×X×Z×Y×V with
joint probability pUXZY V satisfying the Markov conditions:

(U,X,Z)−
− Y −
− V and (V, Y, Z)−
−X −
− U .

For every tuple (xn, zn, yn) ∈ Tnδ (X,Z, Y ), it holds that

Pr
{
(Un, V n) /∈ T nε (U, V |xn, zn, yn)

∣∣Un ∈ Tnδ (U |xn),
V n ∈ Tnδ (V |yn), xn, yn

}
= O

(
c−n

)
−−−−→
n→∞

0 , (10)

for some constant c > 1, provided that pUn|Xn and pV n|Y n are
uniformly distributed over the sets Tnδ (U |xn) and Tnδ (V |yn),
respectively and where ε −−−→

δ→0
0.



Remark 2: The result in Lemma 2 says that, under the
Markov condition assumed, marginal typicality between the
side information zn, the source sequence xn and its description
un implies joint typicality with the source yn and description
vn. Furthermore, this result holds for a large class of typical
sequences as long as the class is stronger and hence implies
definitions 1 and 2 (e.g. unified jointly typical sets [8]). Indeed,
Lemma 2 can be used to systematically extend rate-distortion
regions from discrete to countable infinite sources.

Remark 3: As a matter of fact, this result provides the GML
needed for the inner bound derived in [12].

A. Proof of the Generalized Markov Lemma 2
In order to simplify the notation, for values (u, x, z, y, v) ∈

U×X×Z×Y×V and given tuples of sequences (xn, zn, yn) ∈
Tnδ (X,Z, Y ), we define –using (1)– the counting measures:

KV n(x, z, y, v),p̂xnznynV n(x, z, y, v) , (11)

p̂V nyn(v, y)=
∑
x∈X

∑
z∈Z

KV n(v, x, z, y) , (12)

KUnV n(u, x, z, y, v),p̂UnxnznynV n(u, x, z, y, v) , (13)

p̂Unxn(u, x)=
∑
v∈V

∑
z∈Z

∑
y∈Y

KUnV n(u, x, z, y, v) , (14)

where for convenience we dropped the sequences (xn, zn, yn).
The main idea underlying the proof of (10) is to show that

for a given δ > 0 and every tuple of sequences (xn, zn, yn) ∈
Tnδ (X,Z, Y ) we have

Pr
{
(Un, V n) /∈ Tnδ (U, V |xn, zn, yn)

∣∣Un ∈ Tnδ (U |xn),
V n ∈ Tnδ (V |yn), xn, yn

}
= Pr

{ ∣∣KUnV n(u, x, z, y, v)− p̂xnznyn(x, z, y)pU |X(u|x)

×pV |Y (v|y)
∣∣ > δ for some (u, x, z, y, v) ∈

U × X × Z × Y × V
∣∣∣Un ∈ Tnδ (U |xn),

V n ∈ Tnδ (V |yn), xn, yn
}
= O

(
c−n

)
−−−−→
n→∞

0 (15)

for a constant c > 1. Indeed, (15) holds if for (u, v, x, y, z) ∈
supp(p̂xnznynpUV |XY ) we can bound expressions:

Pr
{ ∣∣KUnV n(u, x, z, y, v)− p̂xnznyn(x, z, y)pU |X(u|x)×

pV |Y (v|y)
∣∣ > δ

∣∣∣Un ∈ Tnδ (U |xn), V n ∈ Tnδ (V |yn), xn, yn}
≤ Pr

(
{KUnV n ∈ Bn} ∩ {KV n ∈ Acn}

∣∣
Un ∈ Tnδ (U |xn), V n ∈ Tnδ (V |yn), xn, yn) (16)

+Pr
(
{KV n ∈ An}

∣∣V n ∈ Tnδ (V |yn), xn, yn) , (17)

where the above sets of rational measures are defined by

An(v, x, y, z),
{
µ ∈ Πn

∣∣∣ |µ− p̂xnznyn(x, z, y)

×pV |Y (v|y)
∣∣ > δ

}
, (18)

Bn(u, v, x, y, z),
{
η ∈ Πn

∣∣∣ ∣∣η − p̂xnznyn(x, z, y)pU |X(u|x)

×pV |Y (v|y)
∣∣ > δ

}
, (19)

for each tuple (u, v, x, y, z) ∈ supp(p̂xnznynpUV |XY ).

1) Bounding the probability event {KV n ∈ An} in expres-
sion (17): We first show that there exists c1 > 1 satisfying

Pr
(
{KV n ∈ An}

∣∣V n ∈ Tnδ (V |yn), xn, yn)
=
∑
µ∈An

Pr (n×KV n = nµ|V n ∈ Tnδ (V |yn), xn, yn) (20)

= O
(
c−n1

)
−−−−→
n→∞

0 . (21)

For given sequences (xn, zn, yn) ∈ Tnδ (X,Z, Y ) and vn ∈
Tnδ (V |yn), we emphasize that p̂yn = pY + εn, p̂xnznyn =
pXZY + ε′n and p̂vnyn = pV Y + ε′′n, where εn ≡ ε′n ≡ ε′′n ≡
o(1/n)→ 0 as n→∞ provided δ ≡ δn → 0 as n→∞, and
for convenience we have dropped (x, z, y, v).

The variable n×KV n(x, z, y, v) corresponds to the number
of occurrences of the symbol "v", which satisfies∑

v∈V
KV n(x, z, y, v) = p̂xnznyn(x, z, y) . (22)

Given a tuples of sequences (xn, zn, yn) ∈ Tnδ (X,Z, Y ),
the problem of finding the pm to evaluate (20) becomes
clearly equivalent to a conventional counting problem in
which we have a population of size n p̂yn = n (pY + εn),
of which n p̂xnznyn = n (pXZY + ε′n) are "v" symbols and
n (p̂yn − p̂xnznyn) are not. Then, we pick without replacement
n p̂vnyn = n (pV Y + ε′′n) samples of such population. For
instance, the probability measure in expression (20) is the
probability that there are n×KV n = nµ symbols "v" amount
the n p̂vnyn samples drawn. This probability can be easily
computed based on basic counting arguments [2]. Therefore,
the probability becomes equal to:

Pr
(
n×KV n = nµ

∣∣V n ∈ Tnδ (V |yn), xn, yn) =(
n p̂xnznyn

nµ

)(
n (p̂yn − p̂xnznyn)

n (p̂vnyn − µ)

)/( n p̂yn

n p̂vnyn

)
, (23)

the support of KV n is bounded by 0 ≤ supp(KV n) ≤
min (p̂vnyn , p̂xnznyn), in order to form a complete system of
events, and the conditional mean is given by

E[KV n ] = pXZY pV |Y + o(1/n) . (24)

The probability measure in (23) is the Hypergeometric
distribution defined in proposition 1. Hence, we can apply
Proposition 1 by setting: N = p̂yn , N1 = p̂xnznyn and
m = p̂vnyn :

1

n
log Pr

(
n×KV n = nµ

∣∣V n ∈ Tnδ (V |yn), xn, yn)
= −IKV

(µ) +O
(
n−1 log n

)
−−−−→
n→∞

−IKV
(µ) , (25)

for each µ ∈ [0, pV Y ], where the rate function IKV
(µ) is:

IKV
(µ)

pY
, H2

(
pV |Y

)
−
[
pXZ|YH2

(
µ/pY
pXZ|Y

)
+
(
1− pXZ|Y

)
H2

(
pV |Y − µ/pY
1− pXZ|Y

)]
+ o(1) . (26)



Furthermore, Proposition 1 also guarantees:

IKV
(µ) ≥ 2

∣∣∣µ− E[KV n ]
∣∣∣2 + ε̂n

= 2
∣∣µ− pXZY pV |Y − o(1/n)∣∣2 + ε̂n . (27)

By using the above bound (27) in expression (20), we obtain

Pr
(
{KV n ∈ An}

∣∣V n ∈ Tnδ (V |yn), xn, yn)
≤
∑
µ∈An

exp
[
−n
(
IKV

(µ) +O(n−1 log n)
)]

(28)

≤ exp

[
−n
(
min
µ∈An

2
∣∣µ− pXZY pV |Y − o(1/n)∣∣2 + o(1)

)]
(29)

where (29) follows by minimizing the exponent with respect
to µ ∈ An and noting that ‖An‖ ≤ n. On the other hand,
since (xn, zn, yn) ∈ Tnδ (X,Z, Y ) then p̂xnznyn = pXY Z+εn,
which from definition (18) implies∣∣µ− pXZY pV |Y − o(1/n)∣∣ > δ , (30)

for all µ ∈ An, and thus

pXZY pV |Y + o(1/n) /∈ An . (31)

Provided condition (31) holds, by using (30), we now bound
expression (29) as follows:

min
µ∈An

∣∣µ− pXZY pV |Y − o(1/n)∣∣2 ≥ δ2 . (32)

Finally, our claim in (21) simply follows by combining the
upper bound in (29) together with the bound in (32), which
yields the desired bound:

Pr
(
{KV n ∈ An}

∣∣V n ∈ Tnδ (V |yn), xn, yn) ≤ O (c−n1

)
,

provided by nδ2 −−−−→
n→∞

∞, where c1 , exp
(
2δ2 + o(1)

)
.

2) Bounding the probability event {KUnV n ∈ Bn} in (16):
We now show that there exists a constant c2 > 1 satisfying

Pr
(
{KUnV n ∈ Bn} ∩ {KV n ∈ Acn}

∣∣Un ∈ Tnδ (U |xn),
V n ∈ Tnδ (V |yn), xn, yn)

≤ Pr
(
{KUnV n ∈ Bn}

∣∣ {KV n ∈ Acn}, Un ∈ Tnδ (U |xn),
V n ∈ Tnδ (V |yn), xn, yn)

=
∑
η∈Bn

Pr
(
n×KUnV n = nη

∣∣Un ∈ Tnδ (U |xn),
V n ∈ Tnδ (V |xn, zn, yn), xn, yn) (33)

= O
(
c−n2

)
−−−−→
n→∞

0 . (34)

Here we will proceed similarly as before, for which we need
to compute the probability measure involved in (33). For given
sequences (xn, zn, yn) ∈ Tnδ (X,Z, Y ), and un ∈ Tnδ (U |xn),
and vn ∈ Tnδ (V |xn, zn, yn), we denote: p̂xn = pX + εn,
p̂xnznynvn = pXZY pV |Y + ε′′n and p̂unxn = pUX + ε′n, where
εn ≡ ε′n ≡ ε′′n ≡ o(1/n) → 0 as n→∞ provided we take
δ ≡ δn → 0 as n→∞, and for convenience we have dropped
(u, x, z, y, v) from the definitions.

The random variable KUnV n(u, x, z, y, v) corresponds to
the number of occurrences of symbols "(u, v)" satisfies:∑

u∈U
KUnV n(u, x, z, y, v) = KV n(x, z, y, v) . (35)

Given a tuples of sequences (xn, zn, yn) ∈ Tnδ (X,Z, Y ),
the involved pm can be found via a simple counting
problem, as previously addressed. Here we have a pop-
ulation of size n p̂xn(x) = n (pX + εn), of which n ×
KV n(x, z, y, v) = n

(
pXZY pV |Y + ε′′n

)
are "u" symbols and

n (p̂xn(x)−KV n(x, z, y, v)) are not. Then, we pick without
replacement n p̂unxn = n (pUX + ε′n) samples of such popula-
tion. For instance, the probability measure in expression (33)
is the probability that there are n × KUnV n = nη symbols
"(u, v)" amount the n (pUX + ε′n) samples drawn. This prob-
ability can be easily computed as before and reads

Pr
(
n×KUnV n = nη

∣∣Un ∈ Tnδ (U |xn),
V n ∈ Tnδ (V |xn, zn, yn), xn, yn)

=

(
n p̂xnznynvn

nη

)(
n (p̂xn − p̂xnznynvn)

n (p̂unxn − η)

)/( n p̂xn

n p̂unxn

)
(36)

where the support of KUnV n is bounded by 0 ≤
supp(KUnV n) ≤ min

(
p̂unxn , p̂xnznynvn

)
, in order to form

a complete system of events. The conditional mean is

E[KUnV n ] = pXZY pU |XpV |Y + o(1/n) . (37)

The probability measure in (36) becomes again a Hyperge-
ometric distribution and hence from Proposition 1 by setting
N = p̂xn , N1 = p̂xnznynvn and m = p̂unxn . Then, a large
deviation principle holds

1

n
log Pr

(
n×KUnV n = nη

∣∣V n ∈ Tnδ (U |xn), V n ∈
Tnδ (V |xn, zn, yn), xn, yn) = −IKUV

(η) +O
(
n−1 log n

)
−−−−→
n→∞

−IKUV
(η) , (38)

for all η ∈ [0, pUX ], where the rate function IKUV
(η) is

IKUV
(η)

pX
, H2

(
pU |X

)
−
[
pZY |XpV |YH2

(
η/pX

pZY |XpV |Y

)
+
(
1− pZY |XpV |Y

)
H2

(
pU |X − η/pX
1− pZY |XpV |Y

)]
+ o(1) . (39)

Furthermore, the rate function IKUV
(η) satisfies

IKUV
(η) ≥ 2

∣∣η − pXZY pU |XpV |Y − o(1/n)∣∣2 + ε̂n . (40)

By using the bound (40) in expression (33), we obtain

Pr
(
{KUnV n ∈ Bn}

∣∣ {KV n ∈ Acn}, Un ∈ Tnδ (U |xn),
V n ∈ Tnδ (V |yn), xn, yn) ≤

exp

[
−n
(
min
η∈Bn

2
∣∣η − pXZY pU |XpV |Y − o(1/n)∣∣2 + o(1)

)]
≤ exp

[
−n
(
2δ2 + o(1)

)]
= O

(
c−n2

)
−−−−→
n→∞

0 (41)

where (41) follows by minimizing the exponent with respect
to η ∈ Bn and noting that ‖Bn‖ ≤ n. On the other hand,



we know that (xn, zn, yn) ∈ Tnδ (X,Z, Y ) and the event
{KV n ∈ Acn} implies V n ∈ Tnδ (V |xn, zn, yn), which leads to
p̂xnznynV n = pXY ZpV |Y + ε′′n. From here it is not difficult to
show –similarly as before– the desired uniform bound in (41).
The result, finally follows by setting c2 , exp

(
2δ2 + o(1)

)
,

provided nδ2 → ∞ as n → ∞. It is worth mentioning here
that c1 and c2 may differ in the constants of o(1), and thus by
setting c , min(c1, c2) the proof of the lemma is finished.

IV. GENERALIZED MARKOV LEMMA (GML): MULTIPLE
ENCODERS AND SIDE INFORMATION

In this section, we provide an alternative proof to the Gen-
eralized Markov Lemma (GML) [5] for the case of multiple
source encoders with side information and countable infinite
alphabets. We exploit again the multinomial characterization
of the empirical probability measures to extend the proof of
Lemma 2 to multiple encoders. Moreover, a scaling law for
large number of source encoders is also investigated.

Lemma 3 (GML for multiple source encoders): Let

qV n
1 ···V n

K |Y n
1 ···Y n

KZ
n =

K∏
k=1

pV n
k |Y

n
k
, (42)

be (non-product) pms defined on (Vnk , σ(Vnk )), for k =
{1, . . . ,K}, and (Yn1 × · · · × YnK × Zn, σ(Yn1 × · · · ×
YnK × Zn)), respectively, and let (V K , Y K , Z) =
(V1, . . . , VK , Y1, . . . , YK , Z) be random variables defined on
countable infinite sources with joint pm pV KY KZ satisfying
the Markov conditions:

(V k−1, Y k−1, V Kk+1, Y
K
k+1, Z)−
− Yk −
− Vk , (43)

for every k = {1, . . . ,K}. For every tuple of sequences
(yn1 , . . . , y

n
K , z

n) ∈ Tnδ (Y K , Z), it holds that

Pr
{
(V n1 , . . . , V

n
K) /∈ Tnδ (V n1 , . . . , V nK |yn1 , . . . , ynK , zn)

∣∣
V nk ∈ Tnδ (Vk|ynk ), yn1 , . . . , ynK

}
= O

(
c−n

)
−−−−→
n→∞

0 , (44)

for some constant c > 1, provided that pV n
k |Y

n
k

are uniform
probability measures over the sets Tnδ (Vk|ynk ), respectively, for
every k = {1, . . . ,K}.

Sketch of the Proof: For lack of space, we only provide
a brief idea of the probability analysis of all typically events
involved in this proof [13]. First, we bound the probability
of the union of non-typical sets in (44) as the summation of
probabilities of K-different events. This is done by following
a similar approach to that used in the proof of Lemma 2 (see
expression (17)). Then, by systematically applying Proposi-
tion (1) and using induction, it is not difficult to see that the
probability of each of these events can be upper bounded by
O
(
c−nk

)
, for some constants {ck > 1} with k = {1, . . . ,K}.

Remark 4 (Scaling law for large number of encoders):
Consider the same assumptions than Lemma 3 and let Kn

be an increasing number of source encoders. The optimal

scaling exponent is the largest positive number β such that

lim inf
n→∞

logKn

n
> β , and

Pr
{
(V n1 , . . . , V

n
K) /∈ Tnδ (V n1 , . . . , V nK |yn1 , . . . , ynK , zn)

∣∣
V nk ∈ Tnδ (Vk|ynk ), yn1 , . . . , ynK

}
−−−−→
n→∞

0. (45)

Then, it holds that any exponent 0 ≤ β < 1 satisfies the
previous conditions.

Sketch of the Proof: This remark simply follows by looking
at the asymptotic behavior of expression (44) with both n and
Kn. By carefully selecting δn → 0 as n → ∞, it is easy to
check that expression (44) behaves as O (Knβ

−n) → 0 as
n→∞ for any 0 ≤ β < 1.

V. SUMMARY AND DISCUSSION

The Generalized Markov Lemma (GML) was shown over
countable infinite sources with multiple source encoders and
side information. We approached this problem via a large
deviation analysis of the multinomial characterization of the
empirical probability measures, which offers bounds on the
asymptotic tail of the probability of the typically event.
Although the tools employed here apply only to countable
alphabets, this extension is theoretically important since it can
be shown to be the most natural way of extending –under some
fairly assumptions– the GML to continuous alphabets [13].
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