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ABSTRACT

In this paper, a generalization of the Gaussian quasi likelihood ratio
test (GQLRT) for Bayesian binary hypothesis testing is developed.
The proposed generalization, called measure-transformed GQLRT
(MT-GQLRT), selects a Gaussian probability model that best em-
pirically fits a transformed conditional probability measure of the
data. By judicious choice of the transform we show that, unlike
the GQLRT, the proposed test is resilient to outliers and involves
higher-order statistical moments leading to significant mitigation of
the model mismatch effect on the decision performance. Under some
mild regularity conditions we show that the test statistic of the pro-
posed MT-GQLRT is asymptotically normal. A data driven proce-
dure for optimal selection of the measure transformation parameters
is developed that minimizes an empirical estimate of the asymptotic
Bayes risk. The MT-GQLRT is applied to signal classification in a
simulation example that establishes significantly improved probabil-
ity of error performance relative to the standard GQLRT.

Index Terms— Bayesian hypothesis testing, Higher-order statis-
tics, probability measure transform, robust statistics, signal classifi-
cation.

1. INTRODUCTION

Bayesian binary hypothesis testing deals with deciding between two
hypotheses based on a sequence of multivariate samples from an
underlying probability distribution that is equal to one of two con-
ditional probability measures [1]. When the prior probabilities of
the considered hypotheses are known and the conditional probability
distributions under each hypothesis are correctly specified the likeli-
hood ratio test (LRT), which minimizes the Bayes risk [1], can be
implemented. In many practical scenarios the conditional proba-
bility distributions are unknown, and therefore, one must resort to
suboptimal tests.

A popular test of this kind is the Bayesian Gaussian quasi LRT
(GQLRT) [2]-[5] which assumes that the probability distributions
of the samples conditioned on each hypothesis are Gaussian. The
Bayesian GQLRT operates by selecting the Gaussian conditional
probability model that best fits the data. When the observations
are i.i.d. this selection is carried out by comparing the empirical
Kullback-Leibler divergences [6] between the underlying condi-
tional probability distribution and the assumed normal probability
measures. The Bayesian GQLRT has gained popularity due to its
implementation simplicity, ease of performance analysis, and its
geometrical interpretations. However, in some circumstances, such
as for certain types of non-Gaussian data, deviation from normality
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can degrade decision performance. This can occur when the first
and second-order statistical moments are weakly identifiable over
the considered hypotheses, or in the case of heavy-tailed data when
the non-robust sample mean and covariance are sensitive to outliers.

In this paper, a generalization of the Bayesian GQLRT is proposed
that operates by selecting a Gaussian probability model that has the
best empirical fit to a transformed conditional probability distribu-
tion of the data. The proposed test is a Bayesian version of the test
proposed in [7] for non-Bayesian binary hypothesis testing. Under
the proposed generalization outliers-resilient tests can be obtained
that involve higher-order statistical moments, and yet have the com-
putational and implementation advantages of the Bayesian GQLRT.

The proposed transform is structured by a non-negative function,
called the MT-function, and maps the conditional probability distri-
bution into a set of new conditional probability measures on the ob-
servation space. By modifying the MT-function, classes of measure
transformations can be obtained that have different useful properties.
Under the proposed transform we define the measure-transformed
(MT) mean vector and covariance matrix, derive their strongly con-
sistent estimates, and study their relation to higher-order statistical
moments and resilience to outliers.

Similarly to the Bayesian GQLRT, the proposed MT-GQLRT
compares the empirical Kullback-Leibler divergences between the
transformed conditional probability distribution of the data and two
normal probability measures that are characterized by the MT-mean
vector and MT-covariance matrix conditioned on each hypothesis.
Under some mild regularity conditions we show that the proposed
test statistic is asymptotically normal. Furthermore, given two train-
ing sequences from the conditional probability distribution of each
hypothesis, a data-driven procedure for optimal selection of the MT-
function within some parametric class of functions is developed that
minimizes an empirical estimate of the Bayes risk.

We illustrate the MT-GQLRT for the problem of Bayesian signal
classification in the presence of heavy-tailed spherically contoured
noise [8] that produces outliers. By specifying the MT-function
within the family of zero-centered Gaussian functions parameterized
by a scale parameter, we show that the MT-GQLRT outperforms
the non-robust Bayesian GQLRT and attains classification perfor-
mance that are significantly closer to those obtained by the omni-
scient Bayesian LRT that, unlike the MT-GQLRT, requires complete
knowledge of the conditional likelihood function given each hypoth-
esis.

The paper is organized as follows. In Section 2, the principles of
our proposed probability measure transform are reviewed. In Sec-
tion 3, we use this transformation to construct the MT-GQLRT. The
proposed test is applied to a signal classification problem in Section
4. In Section 5, the main points of this contribution are summarized.
Proofs for the theorems, propositions and corollaries stated through-
out the paper will be provided in the full length journal version.



2. PROBABILITY MEASURE TRANSFORM

In this section, we develop a transform on the conditional probability
measure of the data. Under the proposed transform, we define the
conditional measure-transformed mean vector and covariance ma-
trix, derive their strongly consistent estimates, and establish their re-
lation to higher-order statistical moments and resilience to outliers.
These quantities will be used in the following section to construct
the proposed measure-transformed GQLRT.

2.1. Probability measure transformation

We define the measure space
�
X ,SX , P

X|✓
�
, where X ✓ Cp is

the observation space of a continuous random vector X, SX is a
�-algebra over X and P

X|✓ is an unknown probability measure on
SX conditioned on a random vector ✓ that takes values in the pair
set ⇥ , {✓

0

,✓
1

} with known a-priori probabilities, P✓0 and P✓1 ,
respectively.

Definition 1. Given a non-negative function u : Cp ! R
+

satisfy-
ing

0 < E

⇥
u (X) ;P

X|✓
⇤
< 1 8✓ 2 ⇥, (1)

where E

⇥
u (X) ;P

X|✓
⇤
,
R
X u (x) dP

X|✓ (x) and x 2 X , a trans-
form on P

X|✓ is defined via the relation:

Q
(u)

X|✓ (A) , Tu

⇥
P

X|✓
⇤
(A) =

Z

A

'u (x;✓) dP
X|✓ (x) , (2)

where A 2 SX and 'u (x;✓) , u (x)/E
⇥
u (X) ;P

X|✓
⇤
. The func-

tion u (·) is called the MT-function.

Proposition 1 (Properties of the transform). Let Q(u)

X|✓ be defined by

relation (2). Then 1) Q(u)

X|✓ is a probability measure on SX . 2) Q(u)

X|✓
is absolutely continuous w.r.t. P

X|✓ , with Radon-Nikodym derivative
[9]:

dQ
(u)

X|✓ (x)/dPX|✓ (x) = 'u (x;✓) . (3)

By modifying u (·), such that the condition (1) is satisfied, virtu-
ally any probability measure on SX can be obtained.

2.2. The conditional MT-mean and MT-covariance

According to (3) the mean vector and covariance matrix of X under
the transformed conditional distribution Q

(u)

X|✓ are given by:

µ(u)

X|✓ , E

⇥
X'u (X;✓) ;P

X|✓
⇤

(4)

and

⌃

(u)

X|✓ , E

h
XX

H'u (X;✓) ;P
X|✓

i
� µ(u)

X|✓µ
(u)H

X|✓ , (5)

respectively. Equations (4) and (5) imply that µ(u)

X|✓ and ⌃

(u)

X|✓ are
weighted mean and covariance of X under P

X|✓ , with the weight-
ing function 'u (·; ·) defined below (2). By choosing u (·) to be any
non-zero constant valued function we have Q(u)

X|✓ = P
X|✓ , for which

the standard conditional mean vector µ
X|✓ and covariance matrix

⌃

X|✓ are obtained. Alternatively, when u (·) is non-constant ana-
lytic function, which has a convergent Taylor series expansion, the
resulting conditional MT-mean and MT-covariance involve higher-
order statistical moments of P

X|✓ .

2.3. Estimates of the conditional MT-mean and MT-covariance

Given a sequence of N i.i.d. samples from P
X|✓ the empirical esti-

mates of µ(u)

X|✓ and ⌃

(u)

X|✓ are defined as:

ˆµ(u)
X

,
NX

n=1

Xn'̂u (Xn) (6)

and

ˆ

⌃

(u)

X

,
NX

n=1

XnX
H
n '̂u (Xn)� ˆµ(u)

x

ˆµ(u)H
x

, (7)

respectively, where '̂u (Xn) , u (Xn)/
PN

n=1

u (Xn). Accord-
ing to Proposition 2 in [10], if E

⇥
kXk2

2

u (X) ;P
X|✓
⇤
< 1 then

ˆµ(u)
X

w.p. 1����!
N!1

µ(u)

X|✓ and ˆ

⌃

(u)

X

w.p. 1����!
N!1

⌃

(u)

X|✓ , where “ w.p. 1���!” denotes
convergence with probability (w.p.) 1 [11].

Robustness of the empirical MT-covariance (7) to outliers was
studied in [10] using its influence function [12] which describes the
effect on the estimator of an infinitesimal contamination at some
point y 2 Cp. An estimator is said to be B-robust if its influence
function is bounded [12]. Similarly to the proof of Proposition 3 in
[10] it can be shown that if the MT-function u(y) and the product
u(y)kyk2

2

are bounded over Cp then the influence functions of both
(6) and (7) are bounded.

3. MEASURE-TRANSFORMED GAUSSIAN QUASI
LIKELIHOOD RATIO TEST

In this section we use the measure transformation (2) to construct
a Bayesian test between the null and alternative hypotheses H

0

:

✓ = ✓
0

and H
1

: ✓ = ✓
1

based on a sequence of samples Xn,
n = 1, . . . , N from the conditional distribution P

X|✓ . Regular-
ity conditions for asymptotic normality of the corresponding test
statistic are derived. Under these conditions, a consistent estimate
of the asymptotic Bayes risk is derived. Optimal selection of the
MT-function u (·) out of some parametric class of functions is also
discussed.

3.1. The MT-GQLRT

Let �(u)

X|✓ denote a complex circular Gaussian probability distribu-

tion [13] that is characterized by the conditional MT-mean µ(u)

X|✓

and MT-covariance ⌃

(u)

X|✓ . The KLD between Q
(u)

X|✓ and �

(u)

X|✓k
,

k 2 {0, 1} is defined as [6]:

D
KL

h
Q

(u)

X|✓||�
(u)

X|✓k

i
, E


log

q(u) (X|✓)
�(u)

(X|✓k)
;Q

(u)

X|✓

�
, (8)

where q(u) (x|✓) and �(u)
(x|✓k) are the density functions of Q(u)

X|✓

and �

(u)

X|✓k
, respectively. When �

(u)

X|✓0
6= �

(u)

X|✓1
, the difference

D[Q
(u)

X|✓||�
(u)

X|✓0
] �D[Q

(u)

X|✓||�
(u)

X|✓1
] will be negative when ✓ = ✓

0

and positive when ✓ = ✓
1

. This motivates an empirical estimate of
this difference as a test statistic for testing H

0

versus H
1

. Accord-
ing to (3), D

KL

h
Q

(u)

X|✓||�
(u)

X|✓k

i
can be estimated using only samples

from P
X|✓ . Hence, similarly to (6) and (7), an empirical estimate of

(8) given a sequence of samples Xn, n = 1, . . . , N from P
X|✓ is

defined as:

ˆD
KL

h
Q

(u)

X|✓||�
(u)

X|✓k

i
,

NX

n=1

'̂u (Xn) log
q(u) (Xn|✓)
�(u)

(Xn|✓k)
, (9)

where '̂u (·) is defined below (7). Hence, we propose the follow-
ing test statistic, which is independent of the unknown conditional



density function q(u) (x|✓):

Tu , ˆD
KL

h
Q

(u)

X|✓||�
(u)

X|✓0

i
� ˆD

KL

h
Q

(u)

X|✓||�
(u)

X|✓1

i
(10)

=

NX

n=1

'̂u (Xn) u (Xn;✓0

,✓
1

)

=

 
D

LD

h
ˆ

⌃

(u)

X

||⌃(u)

X|✓0

i
+

���ˆµ(u)
X

� µ(u)

X|✓0

���
2

⇣
⌃

(u)
x|✓0

⌘�1

!

�
 
D

LD

h
ˆ

⌃

(u)

X

||⌃(u)

X|✓1

i
+

���ˆµ(u)
X

� µ(u)

X|✓1

���
2

⇣
⌃

(u)
x|✓1

⌘�1

!
,

where

 u (X;✓
0

,✓
1

) , log

�(u)
(X|✓

1

)

�(u)
(X|✓

0

)

,

D
LD

[A||B] , tr

⇥
AB

�1

⇤
� log det

⇥
AB

�1

⇤
� p is the log-

determinant divergence [14] between positive definite matrices
A,B 2 Cp⇥p and kak

C

,
p
a

H
Ca denotes the weighted Euclid-

ian norm of a vector a 2 Cp with positive-definite weighting matrix
C 2 Cp⇥p. The decision rule based on the test statistic (10) is given
by

Tu

H1

R
H0

t, (11)

where t 2 R denotes a threshold value. Notice that for any non-
zero constant MT-function, u (·), Q(u)

X|✓ = P
X|✓ and the standard

Bayesian GQLRT is obtained, which only involves first and second-
order moments.

3.2. Asymptotic performance analysis

Here, we study the asymptotic performance of the proposed test (11).
We assume a sequence of i.i.d. samples Xn, n = 1, . . . , N from
P

X|✓ .

Theorem 1 (Asymptotic normality). Assume that the following con-
ditions are satisfied: 1) µ(u)

X|✓0
6= µ(u)

X|✓1
or ⌃

(u)

X|✓0
6= ⌃

(u)

X|✓1
.

2) ⌃

(u)

X|✓0
and ⌃

(u)

X|✓1
are non-singular. 3) E

⇥
u2

(X) ;P
X|✓
⇤

and
E

⇥
kXk4

2

u2

(X) ;P
X|✓
⇤

are finite for ✓ = ✓
0

and ✓ = ✓
1

. Then,

Tu � ⌘
(u)
✓q

�
(u)
✓

D����!
N!1

N (0, 1) 8✓ 2 ⇥,

where “ D�!” denotes convergence in distribution [11], the mean
⌘
(u)
✓ , E

⇥
'u (X;✓) u (X;✓

0

,✓
1

) ;P
X|✓
⇤

and the variance

�
(u)
✓ , N�1

E


'2

u (X;✓)
⇣
 u (X;✓

0

,✓
1

)� ⌘
(u)
✓

⌘
2

;P
X|✓

�
.

Corollary 1 (Asymptotic Bayes risk). Assume that the conditions
stated in Theorem 1 are satisfied. For a loss function,

L(✓, ˆ✓) =

8
><

>:

L
10

, if ˆ✓ = ✓
1

and ✓ = ✓
0

L
01

, if ˆ✓ = ✓
0

and ✓ = ✓
1

0, otherwise
, (12)

where ˆ✓ denotes the outcome of the test (11), the asymptotic Bayes
risk can be written as:

R(u)
(t) , L

10

P✓0Q

0

@ t� ⌘
(u)
✓0q

�
(u)
✓0

1

A
+ L

01

P✓1Q

0

@⌘
(u)
✓1

� t
q
�
(u)
✓1

1

A ,

(13)

where Q (·) denotes the tail probability of the standard normal dis-
tribution.

In the following Proposition, a strongly consistent estimate of the
asymptotic Bayes risk (13) is constructed based two i.i.d. sequences
from P

X|✓0 and P
X|✓1 . This quantity will be used in the sequel for

optimal selection of the MT-function.

Proposition 2 (Empirical asymptotic Bayes risk). Let X(k)
n , n =

1, . . . , Nk, k = 0, 1 denote sequences of i.i.d. samples from P
X|✓0

and P
X|✓1 , respectively. Define the empirical asymptotic Bayes risk:

ˆR(u)
(t) , L

10

P✓0Q

0

@ t� ⌘̂
(u)
✓0q

ˆ�
(u)
✓0

1

A
+ L

01

P✓1Q

0

@ ⌘̂
(u)
✓1

� t
q

ˆ�
(u)
✓1

1

A ,

(14)
where ⌘̂(u)✓k

, PNk
n=1

'̂u

⇣
X

(k)
n

⌘
 u

⇣
X

(k)
n ;✓

0

,✓
1

⌘
and ˆ�

(u)
✓k

,
Nk
N

PNk
n=1

'̂2

u

⇣
X

(k)
n

⌘⇣
 u

⇣
X

(k)
n ;✓

0

,✓
1

⌘
� ⌘̂

(u)
✓k

⌘
2

. Assume that

E

⇥
u2

(X) ;P
X|✓
⇤

and E

⇥
kXk4 u2

(X) ;P
X|✓
⇤

are finite for any

✓ 2 ⇥. Then, ˆR(u) w.p.1�������!
N0,N1!1

R(u).

It can be shown that the optimal threshold that minimizes (14) is:

t
(u)
opt ,

ˆ�
(u)
✓0
⌘̂
(u)
✓1

� ˆ�
(u)
✓1
⌘̂
(u)
✓0

�
q

ˆ�
(u)
✓0

ˆ�
(u)
✓1

ŝ(u)

ˆ�
(u)
✓0

� ˆ�
(u)
✓1

, (15)

where ˆ�u
0

6= ˆ�u
1

w.p. 1 since X is continuous random vector, and

ŝ(u) ,
⇣
⌘̂
(u)
✓0

� ⌘̂
(u)
✓1

⌘
2

�2

⇣
ˆ�
(u)
✓0

� ˆ�
(u)
✓1

⌘
log

L10P✓0

r
ˆ�
(u)
✓1

L01P✓1

r
ˆ�
(u)
✓0

is non-

negative when (14) has a global minimum with respect to t.

3.3. Optimal selection of the MT-function

We propose to specify the MT-function within some parametric fam-
ily {u (X;!) ,! 2 ⌦ ✓ Cr} that satisfies the conditions stated in
Definition 1 and Theorem 1. An optimal choice of the MT-function
parameter ! minimizes the empirical asymptotic Bayes risk (14)
evaluated at the optimal threshold (15).

4. EXAMPLE

We consider the following Bayesian signal classification problem:

H
0

: Xn = Sn✓0

+Wn, n = 1, . . . , N, (16)
H

1

: Xn = Sn✓1

+Wn, n = 1, . . . , N,

where Xn 2 Cp is an observation vector, Sn 2 C is a first-order
stationary random signal that is symmetrically distributed about the
origin, and ✓

0

,✓
1

are realizations of a binary unit norm random vec-
tor ✓ with known a-priori probabilities P✓0 and P✓1 , respectively.
The vector Wn 2 Cp is a first-order stationary additive noise that is
statistically independent of Sn. We assume that the noise component
has a density that is spherically contoured with stochastic represen-
tation [8]:

Wn = ⌫nZn, (17)
where ⌫n 2 R

++

is a first-order stationary process and Zn 2 Cp is
a proper-complex wide-sense stationary Gaussian process with zero-
mean and scaled unit covariance �2

Z

I. The processes ⌫n and Zn are
assumed to be statistically independent.



In order to gain robustness against outliers, as well as sensitivity
to higher-order moments, we specify the MT-function in the zero-
centred Gaussian family of functions parametrized by a width pa-
rameter !, i.e.,

u (x;!) = exp

�
�kxk2/!2

�
, ! 2 R

++

. (18)
Notice that the MT-function (18) satisfies the B-robustness condi-
tions stated at the ending paragraph of Subsection 2.3. Using (4),
(5) and (16)-(18) it can be shown that the conditional MT-mean and
MT-covariance are:
µ(u)

X|✓ (!) = 0 and ⌃

(u)

X|✓ (!) = rS (!)✓✓H
+ rW (!) I, (19)

respectively, where rS (!) and rW (!) are some strictly positive
functions of !. Hence, by substituting (18) and (19) into (10)
followed by normalization by the observation-independent factor
c (!) , rS(!)

rW (!)(rS(!)+rW (!))

, the MT-GQLRT (11) simplifies to

T 0
u , Tu/c(!) = ✓H

1

ˆ

C

(u)
X

(!)✓
1

� ✓H
0

ˆ

C

(u)
X

(!)✓
0

H1

R
H0

t0,

where ˆ

C

(u)
X

(!) , ˆ

⌃

(u)

X

(!)+ˆµ(u)
X

(!) ˆµ(u)H
X

(!) and t0 , t/c(!).
Under the considered settings, it can be shown that the conditions

stated in Proposition 1 are satisfied. We choose L
10

=L
01

=1, under
which the asymptotic Bayes risk (13) reduces to the probability of
error [1]. In this case it can be shown that the asymptotic minimum
probability of error w.r.t. the threshold parameter takes the form:

Pe(!) =
1X

k=0

P✓kQ

✓
1

H(!)
+ (�1)

k 1

2

H(!) log
P✓0

P✓1

◆
, (20)

where H(!) ,
r

2G1(!)+

(

1�|✓H
0 ✓1|2)G0(!)

N
(

1�|✓H
0 ✓1|2)

, Gk(!),
E

[

gk(S,
p
2⌫̄,!

)

h
(

p
2S,

p
2⌫̄,!,2k

)

;PS,⌫ ]

E

2
[

|S|2h(S,⌫̄,!,2k);PS,⌫ ]
, g

1

(S,⌫,!),!2⌫2|S|2
!2

+⌫2 +⌫4,

g
0

(S,⌫,!),
✓⇣

!2|S|
!2

+⌫2

⌘
2

�rS(!)

◆
2

, rS(!),E

[

|S|2h(S,⌫̄,!,2);PS,⌫ ]

E

[

h(S,⌫̄,!,0);PS,⌫ ]
,

⌫̄,⌫�
Z

, and h(S,⌫,!,k),
⇣

!2

⌫2
+!2

⌘p+k

exp

⇣
� |S|2

⌫2
+!2

⌘
.

By (14) and (15) the empirical estimate of (20) is given by:

ˆP (u)
e (!)=

1X

k=0

P✓kQ

0

@
˜t
(u)
opt(!)�⌘̃

(u)
✓k

(!)
q

˜�
(u)
✓k

(!)

1

A, (21)

where ⌘̃
(u)
✓k

(!) ,
⌘̂
(u)
✓k

(!)

c(!)

=

NkP
n=1

'̂u

⇣
X

(k)
n ;!

⌘
⇠
⇣
X

(k)
n ;✓

0

,✓
1

⌘
,

˜�
(u)
✓k

(!),
ˆ�
(u)
✓k

(!)

c2(!)

=

Nk
N

NkP
n=1

'̂2

u

⇣
X

(k)
n ;!

⌘⇣
⇠
⇣
X

(k)
n ;✓

0

,✓
1

⌘
�⌘̃(u)✓k

⌘
2

,

k=0,1, ⇠(X;✓
0

,✓
1

),
��✓H

1

X

��2�
��✓H

0

X

��2, and ˜t
(u)
opt(!) is obtained

from (15) by replacing ⌘̂(u)✓k
and ˆ�

(u)
✓k

with ⌘̃(u)✓k
(!) and ˜�

(u)
✓k

(!).
In the following simulation examples, the vectors ✓

0

and ✓
1

were set to ✓k, 1p
p

h
1,e�i⇡sin(#k),...,e�i⇡(p�1)sin(#k)

iT
, k=0,1,

with a-priori probabilities of P✓0=0.6 and P✓1=0.4 respectively,
were #

0

=0, #
1

=⇡/3 and p=4. We consider a BPSK signal with
variance �2

S and an ✏-contaminated Gaussian noise model [8] under
which the texture component ⌫ in (17) is a binary random vari-
able satisfying ⌫=1 w.p. 1�✏ and ⌫=� w.p. ✏. The parameters ✏
and � that control the heaviness of the noise tails were set to 0.2
and 10, respectively. We define the signal-to-noise-ratio (SNR) as
SNR,10log

10

�2

S/�
2

Z

. In all examples the sample size was set to
N=300. The empirical asymptotic probability of error (21) was
obtained using two i.i.d. training sequences from P

X|✓0 and P
X|✓1

containing N
0

=N
1

=3⇥10

4 samples.

In the first example, we compared the asymptotic probability of
error (20) to its empirical estimate (21) as a function of ! for SNR=

�8 [dB]. Observing Fig. 1, one sees that due to the consistency of
(21) the compared quantities are very close.

In the second example, we compared the empirical, asymp-
totic (20) and empirical asymptotic (21) probability of error of the
MT-GQLRT to the empirical probability of error of the Bayesian
GQLRT and the omniscient Bayesian LRT. The optimal Gaussian
MT-function parameter !

opt

was obtained by minimizing (21) over
⌦=[1,100]. The empirical probability of error curves were obtained
using 10

5 Monte-Carlo simulations. The SNR is used to index the
performances as depicted in Fig. 2. One sees that the MT-GQLRT
outperforms the non-robust Bayesian GQLRT and, attains classi-
fication performance that are significantly closer to those obtained
by the Bayesian LRT that, unlike the MT-GQLRT, requires com-
plete knowledge of the conditional likelihood function under each
hypothesis.
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Fig. 1. Asymptotic probability of error (20) and its empirical esti-
mate (21) versus the width parameter ! of the MT-function (18).
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Fig. 2. The empirical, asymptotic (20) and empirical asymptotic (21)
probability of error of the MT-GQLRT as compared to the empirical
probability of error of the GQLRT and LRT.

5. CONCLUSION

In this paper a new test for Bayesian binary hypothesis testing was
developed that is based on a Gaussian LRT after transformation of
the conditional probability distribution of the data. By specifying
the MT-function in the Gaussian family, the proposed test, called
MT-GQLRT, was applied to Bayesian signal classification in non-
Gaussian noise. Exploration of other MT-functions may result in
additional tests in this class that have different useful properties.
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