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ABSTRACT

In this paper, a generalization of the Gaussian quasi likelihood ra-
tio test (GQLRT) for simple hypotheses is developed. The proposed
generalization, called measure-transformed GQLRT (MT-GQLRT),
applies GQLRT after transformation of the probability measure of
the data. By judicious choice of the transform we show that, unlike
the GQLRT, the proposed test can gain sensitivity to higher-order
statistical information and resilience to outliers leading to signifi-
cant mitigation of the model mismatch effect on the decision perfor-
mance. Under some mild regularity conditions we show that the MT-
GQLRT is consistent and its corresponding test statistic is asymptot-
ically normal. A data driven procedure for optimal selection of the
measure transformation parameters is developed that maximizes an
empirical estimate of the asymptotic power given a fixed empirical
asymptotic size. The MT-GQLRT is applied to signal classification
in a simulation example that illustrates its sensitivity to higher-order
statistical information and resilience to outliers.

Index Terms— Higher-order statistics, hypothesis testing, prob-
ability measure transform, robust classification, signal classification.

1. INTRODUCTION

Classical simple binary hypothesis testing deals with deciding be-
tween two hypotheses based on a sequence of multivariate samples
from an underlying probability distribution that is equal to one of
two known probability measures [1]. When the probability distri-
butions under each hypothesis are correctly specified the likelihood
ratio test (LRT), which is the most powerful test for a given size [2],
can be implemented. In many practical scenarios the probability dis-
tributions are unknown, and therefore, one must resort to suboptimal
tests.

A popular suboptimal test of this kind is the Gaussian quasi LRT
(GQLRT) [3]-[8] which assumes that the samples obey Gaussian
distributions under each hypothesis. The GQLRT operates by se-
lecting the Gaussian probability model that best fits the data. When
the observations are i.i.d. this selection is carried out by comparing
the empirical Kullback-Leibler divergences [9] between the underly-
ing probability distribution and the assumed normal probability mea-
sures. The GQLRT has gained popularity due to its implementation
simplicity, ease of performance analysis, and its geometrical inter-
pretations. Despite the model mismatch, introduced by the normality
assumption, the GQLRT has the appealing property of consistency
when the mean vectors and covariance matrices are correctly spec-
ified and identifiable over the considered hypotheses [6]. However,
in some circumstances, such as for certain types of non-Gaussian
data, large deviation from normality can inflict poor decision per-
formance. This can occur when the first and second-order statistical
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moments are weakly identifiable over the considered hypotheses, or
in the case of heavy-tailed data when the non-robust sample mean
and covariance provide poor estimates in the presence of outliers.

In this paper, a generalization of the GQLRT is proposed that
applies GQLRT after transformation of the probability distribution
of the data. Under the proposed generalization new tests can be ob-
tained that can gain sensitivity to higher-order statistical informa-
tion, resilience to outliers, and yet have the computational and im-
plementation advantages of the GQLRT. This generalization, called
measure-transformed GQLRT (MT-GQLRT), is inspired by the mea-
sure transformation approach that was recently applied to canoni-
cal correlation analysis [10], [11], independent component analysis
(ICA) [12], multiple signal classification (MUSIC) [13], [14] and
parameter estimation [15].

The proposed transform is structured by a non-negative func-
tion, called the MT-function, and maps the probability distribution
into a set of new probability measures on the observation space. By
modifying the MT-function, classes of measure transformations can
be obtained that have different useful properties. Under the pro-
posed transform we define the measure-transformed (MT) mean vec-
tor and covariance matrix, derive their strongly consistent estimates,
and study their sensitivity to higher-order statistical information and
resilience to outliers.

Similarly to the GQLRT, the proposed MT-GQLRT compares
the empirical Kullback-Leibler divergences between the transformed
probability distribution of the data and two normal probability
measures that are characterized by the MT-mean vector and MT-
covariance matrix under each hypothesis. Under some mild regular-
ity conditions we show that the proposed test is consistent and its
corresponding test statistic is asymptotically normal. Furthermore,
given two training sequences from the probability distribution under
each hypothesis, a data-driven procedure for optimal selection of the
MT-function within some parametric class of functions is developed
that maximizes an empirical estimate of the asymptotic power given
a fixed empirical asymptotic size.

We illustrate the MT-GQLRT for the problem of signal classi-
fication in the presence of heavy-tailed spherically contoured noise
[16] that produces outliers. By specifying the MT-function within
the family of zero-centered Gaussian functions parameterized by a
scale parameter, we show that the MT-GQLRT outperforms the non-
robust GQLRT and attains classification performance that are sig-
nificantly closer to those obtained by the omniscient LRT that, un-
like the MT-GQLRT, requires complete knowledge of the likelihood
function under each hypothesis.

The paper is organized as follows. In Section 2, the principles
of our proposed probability measure transform are reviewed. In Sec-
tion 3, we use this transformation to construct the MT-GQLRT. The
proposed test is applied to a signal classification problem in Section
4. In Section 5, the main points of this contribution are summarized.
Proofs for the propositions and corollaries stated throughout the pa-
per will be provided in the full length journal version.



2. PROBABILITY MEASURE TRANSFORM

In this section, we develop a transform on the probability measure
of a random vector. Under the proposed transform, we define the
measure-transformed mean vector and covariance matrix, derive
their strongly consistent estimates, and establish their sensitivity to
higher-order statistical information and resilience to outliers. These
quantities will be used in the following section to construct the
proposed measure-transformed GQLRT.

2.1. Probability measure transformation

We define the measure space (X ,SX , PX;θ), where X ⊆ Cp is the
observation space of a random vector X, SX is a σ-algebra over X
and PX;θ is an unknown probability measure on SX parameterized
by a vector parameter θ that belongs to a pair set Θ , {θ0,θ1}.

Definition 1. Given a non-negative function u : Cp → R+ satisfy-
ing

0 < E [u (X) ;PX;θ] <∞, (1)

where E [u (X) ;PX;θ] ,
∫
X u (x) dPX;θ (x) and x ∈ X , a trans-

form on PX;θ is defined via the relation:

Q
(u)
X;θ (A) , Tu [PX;θ] (A) =

∫
A

ϕu (x;θ) dPX;θ (x) , (2)

where A ∈ SX and ϕu (x;θ) , u (x)/E [u (X) ;PX;θ]. The func-
tion u (·) is called the MT-function.

Proposition 1 (Properties of the transform). Let Q(u)
X;θ be defined by

relation (2). Then 1) Q(u)
X;θ is a probability measure on SX . 2) Q(u)

X;θ

is absolutely continuous w.r.t. PX;θ , with Radon-Nikodym derivative
[17]:

dQ
(u)
X;θ (x)/dPX;θ (x) = ϕu (x;θ) . (3)

The probability measure Q(u)
X;θ is said to be generated by the

MT-function u (·). By modifying u (·), such that the condition (1) is
satisfied, virtually any probability measure on SX can be obtained.

2.2. The MT-mean and MT-covariance

According to (3) the mean vector and covariance matrix of X under
Q

(u)
X;θ are given by:

µ(u)
X;θ , E [Xϕu (X;θ) ;PX;θ] (4)

and

Σ
(u)
X;θ , E

[
XXHϕu (X;θ) ;PX;θ

]
− µ(u)

X;θµ
(u)H
X;θ , (5)

respectively. Equations (4) and (5) imply that µ(u)
X;θ and Σ

(u)
X;θ are

weighted mean and covariance of X under PX;θ , with the weighting
function ϕu (·; ·) defined below (2). Hence, they can be estimated
using only samples from the distribution PX;θ . By modifying the
MT-function u (·), such that the condition (1) is satisfied, the MT-
mean and MT-covariance under Q(u)

X;θ are modified. In particular,
by choosing u (·) to be any non-zero constant valued function we
have Q(u)

X;θ = PX;θ , for which the standard mean vector µX;θ and
covariance matrix ΣX;θ are obtained.

Given a sequence of N i.i.d. samples from PX;θ the empirical
estimators of µ(u)

X;θ and Σ
(u)
X;θ are defined as:

µ̂(u)
X ,

N∑
n=1

Xnϕ̂u (Xn) (6)

and

Σ̂
(u)

X ,
N∑
n=1

XnXH
n ϕ̂u (Xn)− µ̂(u)

x µ̂(u)H
x , (7)

respectively, where ϕ̂u (Xn) , u (Xn)/
∑N
n=1 u (Xn). Accord-

ing to Proposition 2 in [13], if E
[
‖X‖22 u (X) ;PX;θ

]
< ∞ then

µ̂
(u)
X

w.p. 1−−−−→
N→∞

µ
(u)
X;θ and Σ̂

(u)

X

w.p. 1−−−−→
N→∞

Σ
(u)
X;θ , where “

w.p. 1−−−→” denotes

convergence with probability (w.p.) 1 [18].

2.3. Robustness to outliers

Robustness of the empirical MT-covariance (7) to outliers was stud-
ied in [13] using its influence function [19] which describes the ef-
fect on the estimator of an infinitesimal contamination at some point
y ∈ Cp. An estimator is said to be B-robust if its influence function
is bounded [19]. In [13] we have shown that if the MT-function u(y)
and the product u(y)‖y‖22 are bounded over Cp then the influence
function of the empirical MT-covariance is bounded. Similarly, it
can be shown that under the same conditions the influence function
of the empirical MT-mean (6) is bounded.

2.4. Sensitivity to higher-order statistical information

Notice that for any non-constant analytic MT-function u (·), which
has a convergent Taylor series expansion, the MT-mean (4) and the
MT-covariance (5) involve higher-order statistical moments of PX;θ .
In particular, by choosing u (x; t) , exp

(
Re
{
tHx

})
, t ∈ Cp, the

resulting exponential MT-mean and MT-covariance are the gradient
and Hessian of the cumulant generating function (up to some scaling
factors) that have been used for parameter estimation, ICA and chan-
nel identification in [20]-[27]. Moreover, by choosing u (x; t, τ) ,
exp

(
−‖x− t‖2 /τ2

)
, τ ∈ R++, we obtain the Gaussian MT-mean

and MT-covariance that have been used for non-linear correlation
analysis, ICA, robust MUSIC and parameter estimation in [10]-[15].

3. MEASURE-TRANSFORMED GAUSSIAN QUASI
LIKELIHOOD RATIO TEST

In this section we use the measure transformation (2) to construct a
test between the null and alternative simple hypotheses H0 : θ =
θ0 and H1 : θ = θ1 based on a sequence of samples Xn, n =
1, . . . , N fromPX;θ . Regularity conditions for asymptotic normality
of the corresponding test statistic are derived. When these conditions
are satisfied we show that the proposed test is consistent and derive
its asymptotic size and power. Optimal selection of the MT-function
u (·) out of some parametric class of functions is also discussed.

3.1. The MT-GQLRT

Let Φ
(u)
X;θ denote a complex circular Gaussian probability distribution

[28] characterized by the MT-mean µ(u)
X;θ and MT-covariance Σ

(u)
X;θ .

The KLD between Q(u)
X;θ and Φ

(u)
X;θk

, k ∈ {0, 1} is defined as [9]:

DKL

[
Q

(u)
X;θ||Φ

(u)
X;θk

]
, E

[
log

q(u) (X;θ)

φ(u) (X;θk)
;Q

(u)
X;θ

]
, (8)

where q(u) (x;θ) and φ(u) (x;θk) are the density functions ofQ(u)
X;θ

and Φ
(u)
X;θk

, respectively. When Φ
(u)
X;θ0

6= Φ
(u)
X;θ1

, the difference

DKL

[
Q

(u)
X;θ||Φ

(u)
X;θ0

]
−DKL

[
Q

(u)
X;θ||Φ

(u)
X;θ1

]
will be negative under

H0 and positive under H1. This motivates an empirical estimate of



this difference as a test statistic for testing H0 versus H1. Accord-
ing to (3),DKL

[
Q

(u)
X;θ||Φ

(u)
X;θk

]
can be estimated using only samples

from PX;θ . Therefore, similarly to (6) and (7), an empirical estimate
of (8) given a sequence of N samples from PX;θ is defined as:

D̂KL

[
Q

(u)
X;θ||Φ

(u)
X;θk

]
,

N∑
n=1

ϕ̂u (Xn) log
q(u) (Xn;θ)

φ(u) (Xn;θk)
, (9)

where ϕ̂u (·) is defined below (7). Hence, we propose the following
test statistic, which is independent of the unknown density function
q(u) (x;θ):

Tu , D̂KL

[
Q

(u)
X;θ||Φ

(u)
X;θ0

]
− D̂KL

[
Q

(u)
X;θ||Φ

(u)
X;θ1

]
(10)

=

N∑
n=1

ϕ̂u (Xn)ψu (Xn;θ0,θ1)

=

(
DLD

[
Σ̂

(u)

X ||Σ
(u)
X;θ0

]
+
∥∥∥µ̂(u)

X − µ(u)
X;θ0

∥∥∥2(
Σ

(u)
x;θ0

)−1

)

−

(
DLD

[
Σ̂

(u)

X ||Σ
(u)
X;θ1

]
+
∥∥∥µ̂(u)

X − µ(u)
X;θ1

∥∥∥2(
Σ

(u)
x;θ1

)−1

)
,

where

ψu (X;θ0,θ1) , log
φ(u) (Xn;θ1)

φ(u) (Xn;θ0)
,

DLD [A||B] , tr
[
AB−1

]
− log det

[
AB−1

]
− p is the log-

determinant divergence [29] between positive definite matrices
A,B ∈ Cp×p and ‖a‖C ,

√
aHCa denotes the weighted Euclid-

ian norm of a vector a ∈ Cp with positive-definite weighting matrix
C ∈ Cp×p. The decision rule based on the test statistic (10) is:

Tu
H1

R
H0

t, (11)

where t ∈ R denotes a threshold value. Notice that for any non-zero
constant MT-function, u (·),Q(u)

X;θ = PX;θ and the standard GQLRT
is obtained which only involves first and second-order moments.

3.2. Asymptotic performance analysis

Here, we study the asymptotic performance of the proposed test (11).
For simplicity, we assume that a sequence of i.i.d. samples Xn,
n = 1, . . . , N from PX;θ is available.

Proposition 2 (Asymptotic normality). Assume that the following
conditions are satisfied: 1) µ(u)

X;θ0
6= µ

(u)
X;θ1

or Σ
(u)
X;θ0

6= Σ
(u)
X;θ1

.
2) Σ

(u)
X;θ0

and Σ
(u)
X;θ1

are non-singular matrices. 3) E
[
u2 (X) ;PX;θ

]
and E

[
‖X‖42 u

2 (X) ;PX;θ

]
are finite for θ = θ0 and θ = θ1.

Then,
Tu

D−−−−→
N→∞

N
(
η

(u)
θ , λ

(u)
θ

)
∀θ ∈ Θ,

where “ D−→” denotes convergence in distribution [18], the mean
η

(u)
θ , E [ϕu (X;θ)ψu (X;θ0,θ1) ;PX;θ], and the variance
λ

(u)
θ , N−1Var [ϕu (X;θ)ψu (X;θ0,θ1) ;PX;θ].

Corollary 1 (Asymptotic size and power). Assume that the condi-
tions stated in Proposition 2 are satisfied. The asymptotic size and
power of the test (11) are given by:

αu , Q

 t− η(u)
θ0√

λ
(u)
θ0

 and βu , Q

 t− η(u)
θ1√

λ
(u)
θ1

 , (12)

respectively, where Q (·) denotes the tail probability of the standard
normal distribution.

Corollary 2 (Consistency). Assume that the conditions in Proposi-
tion 2 are satisfied. Then, for any fixed asymptotic size the asymp-
totic power of the test (11) satisfies βu → 1 as N →∞.

In the following Proposition, strongly consistent estimates of the
asymptotic size and power (12) are constructed based on two i.i.d.
training sequences from PX;θ0 and PX;θ1 . These quantities will be
used in the sequel for optimal selection of the MT-function.

Proposition 3 (Empirical asymptotic size and power). Let X
(k)
n ,

n = 1, . . . , Nk, k = 0, 1 denote sequences of i.i.d. samples from
PX;θ0 and PX;θ1 , respectively. Define the empirical asymptotic size
and power:

α̂u , Q

 t− η̂(u)
θ0√

λ̂
(u)
θ0

 and β̂u , Q

 t− η̂(u)
θ1√

λ̂
(u)
θ1

 , (13)

respectively, where η̂(u)
θk

,
∑Nk
n=1 ϕ̂u

(
X

(k)
n

)
ψu
(
X

(k)
n ;θ0,θ1

)
and λ̂(u)

θk
, Nk

N

∑Nk
n=1 ϕ̂

2
u

(
X

(k)
n

)
ψ2
u

(
X

(k)
n ;θ0,θ1

)
− 1
N

(
η̂

(u)
θk

)2

.

Assume that E
[
u2 (X) ;PX;θ

]
and E

[
‖X‖4 u2 (X) ;PX;θ

]
are fi-

nite for any θ ∈ Θ. Then, α̂u
w.p.1−−−−−→

N0→∞
αu and β̂u

w.p.1−−−−−→
N1→∞

βu.

3.3. Optimal selection of the MT-function

We propose to specify the MT-function within some parametric
family {u (X;ω) ,ω ∈ Ω ⊆ Cr} that satisfies the conditions stated
in Definition 1 and Proposition 2. An optimal choice of the MT-
function parameterω would be the one that maximizes the empirical
asymptotic power (13) at a fixed empirical asymptotic size α̂u = α,
i.e., we maximize the following objective function:

β̂(α)
u (ω) = Q

 η̂(u)
θ0

(ω)− η̂(u)
θ1

(ω) +
√
λ̂

(u)
θ0

(ω)Q−1 (α)√
λ̂

(u)
θ1

(ω)

 .

(14)

4. EXAMPLE

We consider a signal classification problem that is stated as the prob-
lem of testing the following simple hypotheses:

H0 : Xn = Sn (θ0) + Wn, n = 1, . . . , N, (15)
H1 : Xn = Sn (θ1) + Wn, n = 1, . . . , N,

where Xn ∈ Cp is an observation vector, Sn (θ) , Snθ is a la-
tent random vector, Sn ∈ C is a first-order stationary random signal
that is symmetrically distributed about the origin, θ ∈ Cp is a deter-
ministic unit norm vector and Wn ∈ Cp is a first-order stationary
additive noise that is statistically independent of Sn. We assume that
the noise component is spherically contoured with stochastic repre-
sentation [16]:

Wn = νnZn, (16)

where νn ∈ R++ is a first-order stationary process and Zn ∈ Cp is
a proper-complex wide-sense stationary Gaussian process with zero-
mean and scaled unit covariance σ2

ZI. The processes νn and Zn are
assumed to be statistically independent.



In order to gain robustness against outliers, as well as sensitivity
to higher-order moments, we specify the MT-function in the zero-
centred Gaussian family of functions parametrized by a width pa-
rameter ω, i.e.,

u (x;ω) = exp
(
−‖x‖2/ω2) , ω ∈ R++. (17)

Notice that the MT-function (17) satisfies the B-robustness condi-
tions stated in Subsection 2.3. Using (4), (5) and (15)-(17) it can be
shown that the MT-mean and MT-covariance under Q(u)

X;θ are:

µ(u)
X;θ (ω) = 0 (18)

and
Σ

(u)
X;θ (ω) = rS (ω)θθH + rW (ω) I, (19)

respectively, where rS (ω) and rW (ω) are some strictly posi-
tive functions of ω. Hence, by substituting (17)-(19) into (10)
followed by normalization by the observation-independent factor
c (ω) , rS(ω)

rW (ω)(rS(ω)+rW (ω))
, the MT-GQLRT (11) simplifies to

T ′u , Tu/c(ω) = θH1 Ĉ
(u)
X (ω)θ1 − θH0 Ĉ

(u)
X (ω)θ0

H1

R
H0

t′,

where Ĉ
(u)
X (ω) , Σ̂

(u)

X (ω)+µ̂
(u)
X (ω) µ̂

(u)H
X (ω) and t′ , t/c(ω).

Under the considered settings, it can be shown that the condi-
tions stated in Proposition 2 are satisfied. The resulting asymptotic
power (12) at a given asymptotic size αu = α takes the form:

β(α)
u (ω) = Q

−
√√√√2N

(
G(ω)

1− |θH0 θ1|2
− 1

2

)−1

+Q−1 (α)

 ,

(20)

where G (ω) ,
E[g(S,

√
2ν̄,ω)h(

√
2S,
√

2ν̄,ω);PS,ν ]
E2[|S|2h(S,ν̄,ω);PS,ν ]

, ν̄ , νσZ,

g (S, ν, ω) ,
(
ω2|S|2
ω2+ν2

)2

+ 3ν2
(
ω2|S|2
ω2+ν2

)
+ ν4, and h (S, ν, ω) ,(

ω2

ν2+ω2

)p+2

exp
(
− |S|2
ν2+ω2

)
. Furthermore, its empirical estimate

(14) is given by

β̂(α)
u (ω) = Q

 η̃(u)
θ0

(ω)− η̃(u)
θ1

(ω) +
√
λ̃

(u)
θ0

(ω)Q−1 (α)√
λ̃

(u)
θ1

(ω)

 ,

(21)

where η̃(u)
θk

(ω) ,
η̂
(u)
θk

(ω)

c(ω)
=

Nk∑
n=1

ϕ̂u
(
X

(k)
n ;ω

)
ξ
(
X

(k)
n ;θ0,θ1

)
,

λ̃
(u)
θk

(ω) ,
λ̂
(u)
θk

(ω)

c2(ω)
= Nk

N

Nk∑
n=1

ϕ̂2
u

(
X

(k)
n ;ω

)
ξ2
(
X

(k)
n ;θ0,θ1

)
−

1
N

(
η̃

(u)
θk

)2

, k = 0, 1, and ξ (X;θ0,θ1) ,
∣∣θH1 X

∣∣2 − ∣∣θH0 X
∣∣2.

In the following simulation examples, the vectors θ0 and θ1

were set to θk , 1√
p

[
1, e−iπ sin(ϑk), . . . , e−iπ(p−1) sin(ϑk)

]T
, k =

0, 1, were ϑ0 = 0, ϑ1 = π/3 and p = 4. We consider a BPSK sig-
nal with variance σ2

S and an ε-contaminated Gaussian noise model
[16] under which the texture component ν in (16) is a binary random
variable satisfying ν = 1 w.p. 1 − ε and ν = δ w.p. ε. The param-
eters ε and δ that control the heaviness of the noise tails were set to
0.2 and 10, respectively. We define the signal-to-noise-ratio (SNR)
as SNR , 10 log10 σ

2
S/
[
σ2

Z

(
(1− ε) + εδ2

)]
. In all simulation ex-

amples the sample size was set to N = 103. The empirical asymp-
totic power (21) was obtained using two i.i.d. training sequences
from PX;θ0 and PX;θ1 containing N0 = N1 = 105 samples.

In the first example, we compared the asymptotic power (20) to
its empirical estimate (21) at test size equal to 0.05 as a function of
ω for SNR = −10 [dB]. Observing Fig. 1, one sees that due to the
consistency of (21) the compared quantities are very close.

In the second example, we compared the empirical, asymptotic
(20) and empirical asymptotic (21) power of the MT-GQLRT to the
empirical powers of the GQLRT and the omniscient LRT for test
size equal to 0.05. The optimal Gaussian MT-function parameter
ωopt was obtained by maximizing (21) over Ω = [1, 100]. The em-
pirical power curves were obtained using 104 Monte-Carlo simula-
tions. The SNR is used to index the performances as depicted in
Fig. 2. One sees that the MT-GQLRT outperforms the non-robust
GQLRT and for most examined SNR values performs similarly to
the LRT that, unlike the MT-GQLRT, requires complete knowledge
of the likelihood function under each hypothesis.
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Fig. 1. Asymptotic power (20) and its empirical estimate (21) at test
size α = 0.05 versus the width parameter ω of the MT-function (17).
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Fig. 2. The empirical, asymptotic (20) and empirical asymptotic (21)
powers of the proposed MT-GQLRT as compared to the empirical
powers of the GQLRT and the omniscient LRT at test size α = 0.05.

5. CONCLUSION

In this paper a new test, called MT-GQLRT, was proposed that ap-
plies Gaussian LRT after transformation of the probability distribu-
tion of the data. By specifying the MT-function in the Gaussian
family, the proposed test was applied to signal classification in non-
Gaussian noise. Exploration of other MT-functions may result in
additional tests in this class that have different useful properties.
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