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Abstract—In this paper, we propose an unequal error pro-
tection coding strategy based on superposition coding for the
noisy 20 questions problem. In this problem, a player wishes
to successively refine an estimate of the value of a continuous
random variable by posing binary queries and receiving noisy
responses. When the queries are designed non-adaptively as a
single block and the noisy responses are modeled as the output
of a binary symmetric channel the 20 questions problem can be
mapped to an equivalent problem of channel coding with unequal
error protection (UEP). A superposition coding strategy with
UEP is introduced that has error exponent that is significantly
better than that of the UEP repetition code introduced by Variani
et al. [1].

I. INTRODUCTION AND PROBLEM STATEMENT

Classical information theory assumes that each bit of in-
formation is equally important. When information bits are
transmitted through a noisy channel to a destination, the
communication system provides uniform error protection to all
transmitted information bits. On the other hand, in many ap-
plications, information can be very heterogeneous in its value
to the user at the destination. This occurs, for example, when
the transmitted information bits correspond to coefficients in
the dyadic expansion of a signal that is to be recovered with
small mean squared error.

This motivates a value-centered information transmis-
sion/extraction strategy where the bits of higher significance
get higher levels of error protection.

In this paper, we consider value-centered information ex-
traction in the context of the noisy 20 questions problem [2].
The objective of this problem is to determine the state of
a source by querying about the first k bits in the dyadic
expansion of X ∼ unif[0, 1]. This general setup of noisy 20
questions game has many applications. For example, a target
localization problem can be modeled as a noisy 20 questions
game where a player aims to locate a target by receiving query
responses from sensors probing the region of interest. The
sequence of questions is controlled by a controller that may
either operate open-loop (non-adaptive 20 questions) or use
feedback (adaptive 20 questions).

When queries can be updated based on the collected answers
by feeding back these answers to the controller, the querying
strategy is called adaptive. For adaptive sequential querying,
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successive entropy minimization is often proposed as a way
to design a sequence of queries. As an example, the bisection
policy [3] extracts the maximum 1 bit of information about
X at each round by asking whether X lies to the left or right
of the median of the posterior distribution, which is updated
based on the collected answers. As demonstrated in [4], this
policy achieves mean squared error (MSE) that is decreasing
exponentially in the number of queries N .

On the other hand, in non-adaptive querying, the sequence
of N queries is determined in advance, without the benefit of
feedback. For this case, we aim to estimate the first k bits in
the dyadic expansion of X ∼ unif[0, 1], forming an estimator
of the k-bit quantized X . When the objective is to minimize
the MSE of this estimator of X , importance of the quantized
bits of X is higher for most significant bits (MSB) than it is for
least significant bits (LSB). Thus, any non-adaptive controller
should use a querying strategy that can provide unequal error
protection (UEP) for each of the information bits.

One way to provide unequal error protection is to repeat
the query on the quantized information bits multiple times, the
number of repetitions varying in accordance with the desired
level of unequal protection. Such a UEP repetition coding
approach was considered in [1]. It was shown that the resulting
MSE decreases exponentially in

√
N , which is smaller than

the N exponential rate of decrease achieved in the bisection-
based adaptive 20 questions [3].

The main contribution of this paper is to provide a new
non-adaptive querying strategy based on superposition coding
that can provide UEP and achieves better convergence rates
for the estimation of X . With the proposed querying strategy,
quantized MSE decreases exponentially in N , as contrasted to√
N , matching the rate of the adaptive scheme. Furthermore,

the scale factor in the exponent is better than that of a random
block code employing equal error protection.

A. Problem Statement

To estimate an unknown random variable X ∼ unif[0, 1],
a player asks to an oracle whether X is located within some
sub-region Qi ⊂ [0, 1], either connected or non-connected.
The oracle gives the correct answer Zi(X) = 1(X ∈ Qi),
and the player receives a noisy version Yi ∈ {0, 1} of the
oracle’s answer transmitted through a BSC(ε). After receiving
(Y1, . . . , YN ), the player calculates an estimate X̂N of X .

For non-adaptive block querying, the player estimates X
by querying about the first k bits in the dyadic expansion
of X ≈ 0.B1 . . . Bk where k = NR/ ln 2 for a fixed rate



R > 0. Discovering (B1, . . . , Bk) is equivalent to finding
the index M =

∑k
i=1Bi2

k−1 ∈ {0, . . . , 2k − 1} of the
interval IM := [M2−k, (M + 1)2−k) where the value of the
target variable belongs, X ∈ IM . Here the region of interest
[0, 1] is uniformly quantized into 2k disjoint sub-intervals
{I0, . . . , I2k−1} of length 2−k.

The oracle and the player agree on a block of questions
(Q1, . . . , QN ), and the oracle provides a block of binary an-
swers (Z1, . . . , ZN ). Assume that each querying region Qi is
a union of some subset of quantized intervals {I0, . . . , I2k−1}.
By considering the index M ∈ {0, . . . , 2k − 1} as a message
transmitted from the oracle to the player and the oracle’s
answers as a codeword, block querying can be mapped to an
equivalent problem of block channel coding over a BSC(ε).
Designing a block of questions to discover the index M can
be thought of as designing a length-N and rate-R block code.
When z(m) = (z

(m)
1 , . . . , z

(m)
N ) is a length-N codeword for a

message m ∈ {0, . . . , 2k − 1}, the associated i-th querying
region Qi becomes the union of the sub-intervals {Im′} for
message m′’s such that the i-th answer bit z(m

′)
i equals 1.

Therefore, the encoder specifies a block of questions, and
vice versa. After receiving N channel outputs, the player
generates estimates (B̂1, . . . , B̂k) of (B1, . . . , Bk) and M̂ =∑k
i=1 2

k−iB̂i of the message M . Define the finite resolution
estimator X̂N = M̂e−NR + e−NR/2.

We mainly consider two types of estimation errors. The first
is the mean squared error (MSE) E[|X − X̂N |2]. The second
is the quantized MSE E[cq(X, X̂N )] where the quantized cost
function cq(X, X̂N ) with 2k levels is a stepwise function
defined as

cq(X, X̂N ) = (se−NR)2, when

se−NR − e−NR

2
< |X − X̂N | ≤ se−NR +

e−NR

2
,

for s ∈ {0, . . . , eNR − 1}.

We consider this cost function when the objective is to estimate
the value of X only up to the first k bits in the dyadic
expansion of X ≈ 0.B1 . . . Bk. Note that the quantized MSE
equals 0 if the player correctly decodes the message M . The
error increases proportional to the square of |M − M̂ |.

For a given cost function c(x, x̂N ), the expected estimation
error can be written in terms of block decoding events {M̂ =
M} and {M̂ 6=M} as

E[c(X, X̂N )] =Pr(M̂ 6=M)E[c(X, X̂N )
∣∣M̂ 6=M ]

+ Pr(M̂ =M)E[c(X, X̂N )
∣∣M̂ =M ].

With the finite resolution estimator X̂N = M̂e−NR+e−NR/2,
the MSE and the quantized MSE can be bounded above as

E[|X − X̂N |2] ≤ Pr(M̂ 6=M) + (e−NR/2)2, (1)

E[cq(X, X̂N )] ≤ Pr(M̂ 6=M), (2)

by using E[|X − X̂N |2|M̂ = M ] ≤ (e−NR/2)2 and
E[cq(X, X̂N )|M̂ =M ] = 0 for k = NR/ ln 2, respectively.

Tighter upper bounds on the two estimation errors can be
found by expansion in terms of the bit error probabilities. Not-
ing that E[|X − X̂N |2

∣∣B̂i 6= Bi, B̂
i−1
1 = Bi−11 ] ≤ 2−2(i−1),

we can find upper bounds on the MSE and on E[cq(X, X̂N )]

E[|X − X̂N |2] ≤
k∑
i=1

Pr(B̂i 6= Bi)2
−2(i−1) + 2−2k,

E[cq(X, X̂N )] ≤
k∑
i=1

Pr(B̂i 6= Bi)2
−2(i−1),

(3)

where k = NR/ ln 2 for the code of rate R (nats/channel use).
Note that the upper bounds in (3) show how differently

each bit error probability affects the estimation errors. As the
bit position i increases corresponding to less significance, the
weights on the bit error probabilities decrease exponentially
in i. In order to optimize the upper bound in (3), we need to
design a block code that can provide unequal error protection
for the information bits depending on the bit positions. 1

II. RANDOM BLOCK CODE VS. UEP REPETITION CODE

In this section, we review two representative codes, random
block codes that provide equal error protection for every
information bit, and UEP repetition codes that can provide
unequal error protection through time-division approaches.

A. Random Block Code

A random block code of length N and rate R encodes
(NR/ ln 2) bits of information in length-N binary codewords,
while treating each bit with equal importance. For the random
block code of rate R, define the best achievable error expo-
nent as Er(R) := lim infN→∞

− ln Pr(M̂ 6=M)
N . For a BSC(ε)

with the optimum input distribution Bernoulli(1/2), Forney’s
analysis [5] provides a closed form solution for Er(R),

Er(R) =

{
E0(1/2, ε)−R, 0 ≤ R < Rcrit,

d(γGV(R)‖ε), Rcrit ≤ R ≤ C,
(4)

where E0(a, b) = − log(1−2a(1−a)(
√
b−
√
1− b)2), Rcrit =

d(γcrit(ε)‖1/2) with γcrit(ε) =
√
ε√

ε+
√
1−ε , C = h(1/2)− h(ε),

and γGV(R) satisfies d(γGV(R)‖1/2) = R.
By plugging this error exponent of Pr(M̂ 6=M)=̇e−NEr(R)

into the upper bounds on the MSE in (1), we obtain

E[|X − X̂N |2]≤̇e−NEr(R) + e−2NR=̇e−N min{Er(R),2R} (5)

The tightest upper bound on E[|X − X̂N |2] is obtained at the
rate R maximizing the exponent min{Er(R), 2R}. As shown
in Fig 1, the optimum R∗ occurs at the crossing point of Er(R)
and 2R.

1Notations: Capital letters represent random variables and lower case
letters represent specific realizations of those random variables. The entropy
of a binary random variable X distributed as Bernoulli(α) is denoted
h(a). The Kullback-Leibler divergence between two Bernoulli distributions
Bernoulli(α) and Bernoulli(β) is denoted d(α‖β). The normalized Gilbert-
Varshamov distance 0 ≤ γGV(R) ≤ 1/2 is the value γGV(R) that gives
d(γGV(R)‖1/2) = R. Let the bold face z or zN1 denote the length-N
binary sequence (z1z2 . . . zN ) where zt is the t-th bit of z. The bit-wise XOR
operation is symbolized by ⊕. We use =̇ and ≤̇ as follows: aN =̇eNd denotes
d = lim infN→∞

ln aN
N

, aN ≤̇eNd denotes d ≥ lim infN→∞
ln aN
N

.
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Fig. 1. The random block code error exponent Er(R) of a BSC(0.45) and
the line 2R; the optimum R∗ that maximizes min{Er(R), 2R} occurs at
R∗ ≈ C/6, and the resulting error exponent Er(R∗) is 0.0017 ≈ C/3.

As shown in [6], for a very noisy channel (ε ≈ 0.5) the
error exponent in (4) can be approximated as

Er(R) ≈

{
C
2 −R, 0 ≤ R < C

4 ,

(
√
C −

√
R)2, C

4 ≤ R ≤ C.
(6)

By using this, the MSE exponent for the very noisy BSC can
be calculated.

Lemma 1: For a BSC(ε) with ε ≈ 0.5, at R = R∗ = C
6

E[|X − X̂N |2]=̇e−N
C
3 , (7)

where the capacity of the BSC(ε), C = h(1/2)− h(ε).
For the quantized estimation error of rate R, we obtain

E[cq(X, X̂N )]≤̇e−NEr(R), (8)

whose exponent Er(R) keeps decreasing as R increases. From
the fact that the random block code provides equal protection
for every information bit, we can also show that the bound
on the MSE in (5) and the bound on the quantized estimation
error in (8) are exponentially tight as N →∞.

B. UEP Repetition Code

For repetition codes, each raw bit Bi of M =
(B1, B2, . . . , Bk) is repeatedly transmitted Ni times, where
the total number of channel uses is restricted to

∑k
i=1Ni = N .

In [1], this code was considered in the context of the noisy 20
questions problem. When the information bit Bi is transmitted
Ni times through a BSC(ε), a simple majority voting algorithm
is the maximum likelihood (ML) decoder for Bi achieving

Pr(B̂i 6= Bi) ≤ e−Nid(1/2‖ε). (9)

By assigning different numbers of repetitions
(N1, N2, . . . Nk) for each information bit Bi, we can provide
unequal error protection. To maximize the exponentially
decreasing rate of the bound on the MSE in (3), we need to
balance the exponentially decreasing rates of the terms on
the right hand side of (3). Since the weight on Pr(B̂i 6= Bi)
decreases exponentially in i and Pr(B̂i 6= Bi) decreases
exponentially in Ni, the optimum N∗i should decrease linearly
in i. Therefore, N =

∑k
i=1N

∗
i = O(k2). The optimum k∗ is

thus on the order of O(
√
N), and the corresponding optimum

rate is R∗ = k∗/N , which goes to 0 as N →∞.
Lemma 2: With the UEP repetition code, we can achieve

E[|X − X̂N |2] ≤

(
2

√
Nd(1/2‖ε)

ln 2
+ 1

)
e−2
√

(ln 2)d(1/2‖ε)N .

(10)
Compared to the random block code, whose estimation

errors decrease exponentially in N , the MSE of the UEP
repetition codes decrease exponentially only in

√
N . More-

over, the UEP repetition code cannot achieve the resolution
of e−NR for any R > 0, since the code cannot guarantee a
reliable communication at any positive rate. To improve the
rate of decrease for estimation errors, we need to use more
sophisticated codes that have coding gain.

III. UEP WITH SUPERPOSITION CODE

In the previous section, we showed that both unequal error
protection and coding gain are necessary in order to improve
performance of querying strategies, compared to that of the
random block code. In this section, we provide a length-N
block querying strategy based on superposition coding that
can achieve both UEP and coding gain.

The first k bits in the dyadic expansion of X ∼ unif[0, 1]
have different importances in the estimation of X . To minimize
the estimation error, it is ideal to provide unequal error
protection for each of the information bits. On the other hand,
in order to efficiently encode as many bits as possible in a
length-N block code, at least some of the information bits
should be treated equally. To design a block querying strategy
that achieves both UEP and coding gain, we partition the
quantized information bits of X into sub-groups, and provide
unequal error protection across the groups while treating all
the information bits within each group with equal importance.

For the source X ≈ 0.B1, B2, . . . , Bk, the k1 most
significant bits (MSBs) (B1, . . . , Bk1) of X compose the
partial message M1 and the less significant bits (LSBs)
(Bk1+1, . . . , Bk1+k2) of X compose M2 where k1 + k2 = k.
Denote the rates of M1 and of M2 by R1 = (k1 ln 2)/N and
R2 = (k2 ln 2)/N . Upon transmission of M = (M1,M2) of
total rate R1 + R2 = R, the quantized estimation error of
resolution e−NR can be bounded as

E[cq(X, X̂N )] ≤
Pr(M̂1 6=M1) + Pr(M̂2 6=M2|M̂1 =M1)e

−2NR1 .
(11)

Note that the weight e−2NR1 on Pr(M̂2 6= M2|M̂1 = M1)
shows that the importance of the partial message M2 condi-
tioned on the correctly decoded M1 is significantly smaller
than that of M1. The question is how to design a coding
scheme that provides exponentially better error protection for
the more significant partial message M1 than that of M2.
With the random block code, the best achievable exponentially
decreasing rate of Pr(M̂1 6= M1) is Er(R1 + R2), and this
exponent dominates the convergence rate of E[cq(X, X̂N )],
Thus, to improve the estimation error, we need to design
a UEP code whose Pr(M̂1 6= M1) decreases faster than
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Fig. 2. The distributions of codewords in the output space for random block
code and for UEP code with two layers of priority. To better protect color
information of the codewords, which represents MSBs of the message of the
codewords, the same color codewords should be clustered together.

e−NEr(R1+R2). We show that with superposition coding, we
can do so in the limited regimes of (R1, R2), where R1 is
small enough and R2 is large enough.

A. Encoding of Superposition Codes
In Fig. 2, we compare the codeword distributions of the

random block code and of a desired UEP code with two layers
of priority. Each color dot is a codeword, and the shell around
it is the decoding region for M = (M1,M2) in the output
space {0, 1}N . Here the partial message M1 is represented by
the color of the codeword. Codewords with the same color
have the same partial message (MSBs) M1, while their M2’s
(LSBs) are different. For the random block code, the same
color codewords are uniformly distributed in {0, 1}N . When
a noise vector corrupts the transmitted codeword beyond the
correct decoding region, the decoded message M̂ may not have
the same color as that of M , since there are eNR1 different
colors. On the other hand, if the same color codewords are
concentrated together as shown in the right figure, even if noise
corrupts the transmitted codeword, the color information will
have higher probability of being correctly decoded. We next
construct a code whose distribution satisfies such a geometric
UEP property using superposition coding principles.

Superposition codes [7] were originally developed as a
channel coding scheme for communications over a degraded
broadcast channel. Here we use the scheme to design a UEP
code for two layers of priority. A superposition code of length
N and rate R = R1 + R2 is composed of eN(R1+R2) binary
length-N codewords, {z(m1,m2)}, where z(m1,m2) = u(m1)⊕
v(m2) for m1 ∈ {0, . . . , eNR1 − 1},m2 ∈ {0, . . . , eNR2 − 1}.
The partial codewords {u(m1)} and {v(m2)} are independently
generated, where u

(m1)
i ’s are i.i.d. with Bernoulli(1/2) and

v
(m2)
i ’s are i.i.d. with Bernoulli(α) for some α ∈ (0, 1/2).

In contrast with the random block code, where every
codeword is independent, in a superposition code the subset
of codewords {z(m1,m2)}, m2 ∈ {0, . . . , eNR2 − 1}, for a
fixed m1 (the same color codewords), are dependent on each
other. Moreover, as α decreases from 1/2 to 0, codewords with
the same color become more and more concentrated around
u(m1). Therefore, the superposition code satisfies the desired
geometric property of UEP for two layers of priority.

B. Decoding of Superposition Codes
Let us consider decoding of the partial messages m1 and

m2 given channel outputs y = z(m1,m2) ⊕ n where n is a

length-N noise word with i.i.d. Bernoulli(ε) symbols. Define
the best achievable error exponents of Pr(M̂1 6= M1) and of
Pr(M̂2 6= M1|M̂1 = M1) for the superposition code of rate
(R1, R2), with the parameter α ∈ (0, 1/2), as Em1

(R1, R2, α)
and Em2

(R2, α), respectively.
There have been many previous works [8], [9], [10] to

analyze lower bounds on the error exponent of Pr(M̂1 6=
M1). Even though some results were shown to achieve a
numerically tighter bound than the others, there has been no
closed form solution for Em1

(R1, R2, α) that is exponentially
tight for Pr(M̂1 6= M1). Among many lower bounds on
Em1(R1, R2, α), we consider bounds based on two sub-
optimal decoding rules, which provide meaningful results in
the analysis of Pr(M̂1 6=M1) from the UEP perspective.

The first sub-optimal decoding rule we consider is the joint
maximum likelihood decoding. Given the received word y,
this decoding rule finds the most probable pair of (m̂1, m̂2).
Decoding error of m1 happens only when m̂1 6= m1 regardless
of whether m̂2 6= m2 or not. When Em1,JML(R1, R2) denotes
the error exponent of Pr(M̂1 6= M1) with the sub-optimal
joint ML decoding, it can be shown that Em1,JML(R1, R2) ≥
Er(R1 + R2) for every (R1, R2), regardless of the choice
of α ∈ (0, 1/2). Therefore, the superposition code provides
a better, or at least as good, error protection for the partial
message M1 as that of the random block code for every
(R1, R2), regardless of the choice of α ∈ (0, 1/2).

The second sub-optimal decoding rule we consider is suc-
cessive cancellation (SC). This decoding rule behaves as if
one of the partial codewords in {u(m1)} were transmitted,
while treating v(m2) as noise. Given the channel outputs
y = u(m1) ⊕ v(m2) ⊕ n, this decoder first finds the most
probable u(m̂1) under the assumption that it was transmitted
through a BSC (α ∗ ε) where α ∗ ε := α(1− ε) + (1− α)ε. It
then subtracts u(m̂1) from y to next decode m̂2. Denote the
error exponent of Pr(M̂1 6= M1) with the SC decoding as
Em1,SC(R1, α). In [10], it was demonstrated that

Em1,SC(R1, α) = (12){
E0(1/2, α ∗ ε)−R1, 0 ≤ R1 < Rcirt(α ∗ ε),
d(γGV(R1)‖α ∗ ε), Rcirt(α ∗ ε) ≤ R1 < C − C2(α),

where C = h(1/2)−h(ε), C2(α) = h(α∗ε)−h(ε). It was also
shown that the error exponent of Pr(M̂2 6= M1|M̂1 = M1),
defined as Em2

(R2, α), is positive for any R2 ∈ [0, C2(α)),
while the exponent becomes 0 at R2 = C2(α).

By comparing Em1,SC(R1, α) in (12) with the random
block code exponent Er(R1 + R2) in (4), we can show
that for sufficiently large R2 and sufficiently small R1 the
superposition code provides a strictly better error protection
for the partial message M1 than the random block code does.

Moreover, for a very noisy BSC(ε), the following establishes
a strict gain in the error exponent of Pr(M̂1 6=M1) for every
R1 ∈ [0, C − C2(α)) when R2 = C2(α).

Lemma 3: Assume a very noisy BSC(ε) with ε ≈ 0.5, a
fixed α ∈ (0, 1/2), and the rate R2 = C2(α). Then the error
exponent of Pr(M̂1 6=M1) for the superposition code, denoted



Em1
(R1, R2, α), is strictly larger than that of the random

block code for all R1 ∈ [0, C − C2(α)). More precisely,

Em1
(R1, R2, α) ≥ Em1,SC(R1, α) > Er(R1 +R2). (13)

In Fig 3, we provide a plot of Er(R1 +R2) (black solid line)
and Em1,SC(R1, α) (blue dash-dot line) over R = R1+R2 for
a BSC(0.45) with α = 0.11 and R2 = C2(α). It can be shown
that Em1,SC(R1, α) is above Er(R1 + R2) for every R1 ∈
[0, C−C2(α)). We will use the improvement in Pr(M̂1 6=M1)
to demonstrate a gain in E[cq(X, X̂N )].

C. Performance of the Superposition Code in Estimation

We demonstrate a gain in the exponent of the quantized
estimation error E[cq(X, X̂N )] of resolution e−NR with the
superposition code. Define the exponentially decreasing rate
of E[cq(X, X̂N )] in N for the superposition code at a fixed
rate R ∈ (0, C) as Es(R) = lim infN→∞

− lnE[cq(X,X̂N )]
N . The

random block code achieves an exponentially decreasing rate
of E[cq(X, X̂N )] equal to Er(R) in (4) for a given rate R. By
using Lemma 3, we show that for a very noisy BSC, we can
achieve Es(R) > Er(R) where R ∈ (C6 , C).

Theorem 1: For a very noisy BSC, the exponent Es(R) of
E[cq(X, X̂N )] for the superposition code is strictly larger than
that of the random block code Er(R) for R ∈ (C6 , C). More
precisely, for any R ∈ (C6 , C)

Es(R) ≥ Em1,SC(R
∗
1, α
∗) > Er(R) (14)

for α∗ satisfying C2(α
∗) = 6

5 (R−
C
6 ) and R∗1 = R−C2(α

∗).
Sketch of Proof: Using the superposition code with two

layers, the achievable E[cq(X, X̂N )] can be bounded above as

E[cq(X, X̂N )] ≤ e−NEm1,SC(R1,R2,α)+e−NEm2 (R2,α)e−2NR1 .

Thus, Es(R) ≥ max(R1,R2,α)∈B min{Em1,SC, Em2
+ 2R1}

for B := {(R1, R2, α) : R1 + R2 = R,α ∈ (0, 1/2)}. For
(R1, R2, α) = (R − C2(α), C2(α), α), since Em2

(R2, α) =
0, we have Es(R) ≥ max(R1,R2,α)∈B min{Em1,SC, Em2 +
2R1} ≥ maxαmin{Em1,SC, 2R1}. For R ∈ (C/6, C),
there exists α∗ ∈ (0, 1/2) that makes Em1,SC = 2R1 =
2(R − C2(α

∗)). Therefore, Es(R) ≥ min{Em1,SC, 2R1} =
Em1,SC(R1, α

∗) for α∗ satisfying Em1,SC(R1, α
∗) = 2(R −

C2(α
∗)), or equivalently C2(α

∗) = 6
5 (R −

1
6C) for ε ≈ 1/2.

Moreover, as shown in Lemma 3, Em1,SC(R1, α) > Er(R1 +
R2) for every R1 when R2 = C2(α). Thus, for the chosen α∗

and R∗1 = R− C2(α
∗), the inequalities in (14) hold.

In Fig 3, the gain in Es(R) at R = C/2 is illustrated.
Discussion: We next consider the achievable MSE. For the

superposition code, the quantized MSE at a fixed rate R is
E[cq(X, X̂N )]=̇e−NEs(R) and the MSE can be bounded as

E[|X−X̂N |2]≤̇e−NEs(R)+e−N2R=̇e−N min{Es(R),2R}. (15)

For the random block code, the MSE exponent is
equal to min{Er(R), 2R}. For a very noisy BSC, we
have min{Er(R), 2R} = 2R for R ∈ (0, C/6) and
min{Er(R), 2R} = Er(R) for R ∈ (C/6, C). Therefore,
in the high rate regimes, the MSE exponent is dominated
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Fig. 3. A plot of Er(R1 +R2), Em1,SC(R1, α), and 2R1 at R2 = C2(α)
where ε = 0.45 and α = 0.11. When R2 = C2(α), for every R1 ∈
[0, C − C2(α)), Em1,SC(R1) is above Er(R1 + R2). For R = C/2 =
0.0025, by choosing α to satisfy Em1,SC(R1, α) = 2R1 = 2(R−C2(α)),
the achievable exponent of E[cq(X, X̂N )] with the superposition code (the
crossing point of Em1,SC(R1) and 2R1) is strictly larger than Er(R), which
is the best achievable exponent of E[cq(X, X̂N )] with the random block code.

by the limited reliability of decoded message. By using the
superposition code, we achieved the quantized MSE exponent
Es(R) > Er(R) in R ∈ (C/6, C). This improvement thus re-
sults in a better convergence rate of the MSE in R ∈ (C/6, C).

IV. CONCLUSIONS

Different from classical communications, in inference prob-
lems the value of information varies significantly depending on
the task-specific cost functions. We proposed an unequal error
protection coding based on superposition coding for estimating
a quantized random variable, with demonstrated performance
gains in estimation error. A superposition code can provide
unequal error protection for two layers of information bits
and guarantee improved rates of convergence for the expected
quantized estimation error, exponentially decreasing in N with
the exponent larger than that of the random block code.
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