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ABSTRACT

In this paper, we propose an efficient algorithm to train a

robust large-margin classifier, when corrupt measurements

caused by sensor failure might be present in the training set.

By incorporating a non-parametric prior based on the empiri-

cal distribution of the training data, we propose a Geometric-

Entropy-Minimization regularized Maximum Entropy Dis-

crimination (GEM-MED) method to perform classification

and anomaly detection in a joint manner. We demonstrate

that our proposed method can yield improved performance

over previous robust classification methods in terms of both

classification accuracy and anomaly detection rate using sim-

ulated data and real footstep data.

Index Terms— corrupt measurements, robust large-

margin training, anomaly detection, maximum entropy dis-

crimination

1. INTRODUCTION

Large margin classifiers, such as support vector machines

(SVMs), have demonstrated good classification performance

when the training data is representative of the test data

[1, 2, 3]. However, in many real-world applications training

data can suffer from corrupted measurements due to sensor

failure. In such cases, unless one accounts for possible cor-

ruption of the training data, the performance of the classifier

degrades significantly. This paper presents a new and effec-

tive approach to train classifiers with corrupted data.

There have been several approaches [4, 5, 6] to train clas-

sifiers in a manner that is robust to corrupted training data.

Among these approaches, one common strategy is to use

Ramp Loss [1, 7, 8], which explicitly limits the value of the

maximal loss. The drawbacks of these Ramp-Loss-based ap-

proaches is that they do not provide a unified framework for

joint anomaly detection and classification, and they are not

capable of handling corrupted training samples.

The motivation behind our proposed algorithm is that cor-

rupted data can be detected in the training set by using

anomaly detection techniques [9] during the classifier training
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process. Such techniques are expressely designed to detect

anomalies in order to attain the lowest possible false alarm

and miss probabilities. In keeping with the non-parametric

nature of the SVM classifier, we will focus on non-parametric

anomaly detection schemes. Examples include minimal vol-

ume (MV) set anomaly detection [10, 11], and minimal en-

tropy set anomaly detection [12, 13], etc. Among them, Hero

et al. [12, 13] developed the Geometric Entropy Minimiza-

tion (GEM) principle that estimates the MV set based on the

k-nearest neighbor graph (k-NNG). The key contribution of

this paper is incorporation of GEM anomaly detection into an

SVM classifier under a non-parametric corrupt-data model.

Our proposed Geometric-Entropy-Minimization regular-

ized Maximum Entropy Discrimination (GEM-MED) frame-

work integrates large-margin training with anomaly detection

using a Bayesian convex optimization framework. The Max-

imum Entropy Discrimination (MED) approach proposed by

Jaakkola et al [14] performs Bayesian large margin classifica-

tion using the maximum entropy principle. MED subsumes

SVM as a special case. In this paper, we impose an adaptive

large margin constraint for each of the sample instances. This

constraint uses a Bayesian prior that is based on the GEM

principle of anomaly detection. The resulting GEM-MED

classifier effectively reduces the impact of anomalous sam-

ples on classification. We demonstrate superior performance

on simulated data and on a real data set, containing human

and human-leading-animal footsteps, collected in the field by

acoustic sensors [15, 16, 17].

The outline of the paper is as follows: In Section 2, the

MED framework is introduced. In Section 3, the GEM-MED

framework is presented and a solution is proposed using vari-

ational inference. In Section 4, experiment results based on

synthesis data and real data are presented.

2. LARGE-MARGIN TRAINING WITH MED

Let the training data set be D ≡ {(xn, yn)}Nn=1, where xn ∈
Rp, yn ∈ {−1, 1}. Assume the predictive distribution is log-
linear, i.e. log p(y|x, Θ) ∝ F (y,x; Θ) = 1

2y(w
T
x + b),

where Θ = (w, b) and F (y,x; Θ) is the linear discriminative
function parameterized by Θ. Denote the prior distribution of
Θ as p0(Θ). The goal for the Maximum Entropy Discrimina-
tion (MED) [14] is to learn a posterior distribution p(Θ|D),
by solving an entropic regularized risk minimization problem
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with prior p0(Θ)

min
p(Θ|D)

∑

n

[

1−Ep(Θ | D){∆F (yn,xn; Θ)}
]

+
(1)

+KL (p(Θ|D)‖p0(Θ)) ,

where [s]+ = max{s, 0}. KL(p‖q) is the Kullback-

Leibler divergence from distribution p to q, i.e.

KLp(Θ|D) (p(Θ|D)‖p0(Θ)) =
∫

Θ
p(Θ|D) log

(

p(Θ|D)
p0(Θ)

)

dΘ

and ∆F (yn,xn; Θ) ≡ F (yn,xn; Θ) − F (y 6= yn,xn; Θ) =

log
(

p(yn|xn,Θ)
p(y 6=yn|xn,Θ)

)

is the log-odds that defines the classifier.

The first term in (1) is a hinge-loss that captures the large-
margin principle underlying the MED prediction rule,

y
∗ = argmaxy Ep(Θ|D) [F (y,x; Θ)] .

As in kernel SVM, we could extend the predictive distri-

bution to a log non-linear function by kernelization [18, 19].

Specifically, a kernelized version of MED (1) is implemented

by redefining the predictive distribution as F (y,x;w) =
1
2yw

T
Φ(x), where Φ is the prescribed feature map. De-

fine the kernel function K : Rp × Rp 7→ R that satis-

fies 〈Φ(xi), Φ(xj)〉 = K(xi,xj), for ∀xi,xj ∈ D. If

we use a Gaussian Process [20] as the prior on w, i.e.

p0(w) = N (w; 0, I), kernel MED is obtained by solving

(1) with Θ = w. The kernel MED approach is adopted in

Sec. 4 but, for simplicity, we assume the log-linear model in

Sec. 3.

Since the hinge loss in (1) is applied to every sample in-

stance with equal weight, the training the MED classifier can

be overly sensitive to anomalous samples. Therefore, it is de-

sirable to extend MED to account for the possible presence of

anomalous samples in the training set.

3. GEM REGULARIZED MED (GED-MED)

3.1. GEM regularized MED: model development

We develop a model that explicitly accounts for the possi-

ble presence of anomalous samples, by introducing a latent

variable ηn ∈ {0, 1} associated with each sample xn, where

ηn = 1 means that xn is nominal (uncorrupted), and ηn = 0
means that xn is anomalous. Denote η = [η1, . . . , ηN ]T .

The goal is to learn the posterior joint distribution
p(Θ,η | D), given the prior p0(Θ,η) = p0(Θ) p0(η) =
p0(Θ)

∏

n p0(ηn). In analogy to the MED principle in (1),
we propose a regularized MED framework to achieve this
goal,

min
p(Θ,η | D)

∑

n

Ep(Θ,η | D){ηn [1−∆F (yn,xn|Θ)]+} (2)

+C Rp(Θ,η | D)(η) +KL(p(Θ,η | D)‖p0(Θ) p0(η)),

where Rp(Θ,η | D)(η) is the regularizer on η associated with

p(Θ,η | D), and C > 0 is the regularization parameter.

Note that the first term in (2) couples the quality of data, ηn,

to the class prediction loss [1−∆F (yn,xn|Θ)]+ . Compared

with (1), this empirical risk is adaptive to the latent state η of

the training samples, since a suspected anomalous instance

(i.e. ηn = 0) will have no impact on the risk function.

The main contribution of this paper is the inclusion of

the regularization term Rp(Θ,η | D)(η) into the MED frame-

work. This term is estimated via GEM principle [12, 13] and

it can be interpreted equivalently as the log of an empirical

Bayesian prior on the quality indicator η. In contrast to a data-

independent prior p0(η), the proposed prior Rp(Θ,η | D)(η)
depends on the empirical probability distribution of the train-

ing data D. This is further discussed in Sec. 3.2.

The motivation for our approach is that the Ramp-Loss-

based robust classification methods [1, 7, 8, 5, 6] fail to cap-

ture a crucial characteristic property of the anomalous data:

such data tends to lie in the tail (low probability region) of

the data set. As previous classification models do not explic-

itly account for the tails of the empirical distribution of the

training data, one might expect significant classification per-

formance improvement by incorporating such tail information

via Rp(Θ,η | D)(η).

3.2. The construction of regularizer via GEM principle

To construct the regularization term Rp(Θ,η | D)(η) we fol-

low the Geometric Entropy Minimization (GEM) [12, 13]

principle. Specifically, GEM estimates Ωβ , where Ωβ =
argminA{H(A) :

∫

A
p(x)dx ≥ 1−β} is the minimal-entropy

-set of false alarm level β, H(A) = −
∫

A
log p(x) p(x)dx is

the Shannon entropy of the density p(x) over the region A.

Given Ωβ , a sample xn is declared anomalous if xn 6∈ Ωβ .

The decision rule is the Uniformly Most Powerful Test at

level β when the anomalies are drawn from an unknown mix-

ture of known nominal distribution p(x) and uniform anoma-

lous distribution[12]. As the training data distribution p(x) is

unknown, GEM approximates this decision rule by replac-

ing Ωβ with an empirical estimate Ω̂β using the empirical

distribution p̂(xn). Since ηn is the indicator function of the

event xn 6∈ Ωβ , GEM reduces to solving η
∗ = argminA{

− 1
N

∑

n ηn log(p̂(xn)) :
1
N

∑

n ηn ≥ 1−β}. To approximate

η
∗, as in [12, 13] a k-nearest neighbor graph approximation

to Ωβ is constructed from the data set.

In our model GEM is implemented by using a bipartite

K-point kNN graph (BP-kNNG) [13]. Specifically, we first

split the training set into two parts using the class labels.

The BP-kNNG anomaly detector of [13] is then implemented

on each part Xc = {xn : yn = c}, c ∈ {±1} indepen-

dently. This results in partitioning the data set Xc into two

parts {XNc
, XMc

}. For each sample, xn ∈ XN,yn
, its local

entropy is estimated via − log(p̂(xn)) = d log(Rk(xn)) −

log
(

k−1
Mc cd

)

, where Rk(xn) is the sum of k-nearest neighbor

(kNN) distance from the target sample xn to its Mc refer-

ence samples in XMc
; d is the intrinsic dimension of xn and

cd is the volume of the unit ball in d dimensions. We esti-

mate − log(p̂(xm)) for xm ∈ XMc
in a similar manner. Then

the set Ec ≡ {− log(p̂(xn)) : yn = c} is arranged in as-

cending elements of the order, and we denote the sum of the

first sρ smallest entropy values as Sc. The threshold sρ is

set using the heuristic sρ = argmaxk{| − log(p̂(x[k−1])) +
log(p̂(x[k]))|}, where − log(p̂(x[k])) denotes the k-th small-

est elements in Ec.
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Given Sc for each class c ∈ {−1,+1}, the GEM regular-
ization term Rp(Θ,η | D)(η) is defined as

Rp(Θ,η | D)(η) (3)

≡
∑

c∈{−1,+1}



Ep(Θ,η | D)



−
∑

n:yn=c

ηn
log(p̂(xn))

N



− Sc





+

.

This term will impose a penalty for ηn = 1, when xn 6∈ Ω̂β ,

since the value of Sc will make the summand of (3) positive.
Substituting (3) into (2), the GEM regularized-MED (GEM

-MED) is obtained as

min
p(Θ,η | D)

∑

n

Ep(Θ,η | D){ηn [1−∆F (yn,xn|Θ)]+} (4)

+C
∑

c∈{−1,+1}



Ep(Θ,η | D)



−
∑

n:yn=c

ηn
log(p̂(xn))

N



− Sc





+

+KL(p(Θ,η | D)‖p0(Θ) p0(η)),

where, as in (2), C is a regularization parameter.

3.3. Solving GEM-MED via variational inference

Similar to the form of p(Θ|D) in MED, p(Θ,η|D) in GEM-
MED (4) takes the form

p(Θ,η|α,µ,D) =
1

Z(α,µ)
p0(Θ) exp(−

∑

n

ηnαn{1−∆Fn(Θ)})

×p0(η) exp



−
∑

c∈{−1,+1}

µc



−
∑

n:yn=c

ηn
log(p̂(xn))

N
− Sc









s.t. 0 � α � 1, 0 � µ � C1,

where 1 = [1, . . . , 1]T , ∆Fn(Θ) ≡ ∆F (yn,xn|Θ).
Z(α,µ) is the partition function of the distribution and α =
[α1, . . . , αN ]T and µ = [µ−1, µ1]

T are dual variables associ-

ated with the hinge loss and regularizer in (4), respectively.
To identify the dual variables α and µ, it is required to

solve for the minimum of the log-partition function

max
0�α�1,0�µ�C1

− logZ(α,µ)

= − log
∑

η∈{0,1}N

∫

Θ

p(Θ,η|α,µ, D)dΘ. (5)

As (5) is concave in α and µ we propose a projected stochas-

tic gradient descent algorithm (PSGD) [21] with Gibbs sam-

pling. The procedure is summarized in Algorithm 1. As

noted, we define πn ≡ p(ηn,T = 1|ΘT ,D) as the anomaly

score for each sample, where T is the final iteration of the

PSGD algorithm.

4. EXPERIMENT

4.1. Simulated data

The first experiment is conducted on a simulated data set.

For each class c ∈ {±1} samples are generated from the bi-

variate Gaussian distribution, with mean m−1 = (3, 3) and

m+1 = −m−1 and common covariance Σ =

[

20 16
16 20

]

.

Here Θ = (w, b) has Gaussian prior in product form p0(Θ) =
N (w; 0, I)N (b; 0, σ2

b ). For each sample n, the prior on ηn is

set to be equally likely: p0(ηn) = 1/2.
The anomalies in the training set are drawn uniformly from

a ring with an inner radius of R and outer radius R+1, where

Algorithm 1 GEM regularized MED

Input: D ≡ {(xn, yn)}
N
n=1, where xn ∈ Rp, yn ∈ {±1}. Prior

distribution p0(Θ), p0(ηn) and the upper bound Sc, c ∈ {±1}.

1: Initialize: Set µ0 = 0. α0 is set by applying MED on D
2: for t = 1, . . . , T or until converge do
3: Compute the gradient of log-partition function w.r.t αt and

µt, respectively, as

∂ logZ(αt,µt)

∂αn

= Ep(Θ,η|αt,µt,D) [ηn {∆F (yn,xn; Θ)− 1}] ,

n = 1, . . . , N,

∂ logZ(αt,µt)

∂µc
= Ep(Θ,η|αt,µt,D)





∑

n:yn=c

ηn
log(p̂(xn))

N
+ Sc





c ∈ {−1,+1},

where the expectation is approximated via Gibbs sampling

with the conditional density p(η|Θ̂,D) =
∏N

n=1 p(ηn|Θ̂,D) and

p(Θ|η̂,D) computed explicitly.

4: Update αn and µc via projected gradient descent, i.e.

αn,(t+1) = proj{α: 0≤α≤1}

{

αn,t − ϕ
∂ logZ(αt,µt)

∂αn

}

n = 1, . . . , N,

µc,(t+1) = proj{µ: 0≤µ≤C}

{

µc,t − ψ
∂ logZ(αt,µt)

∂µc

}

c ∈ {−1,+1},

where proj{w: 0≤w≤C}{w} ≡ min (max(w, 0), C) defines the

projection of w on the feasible set {w : 0 ≤ w ≤ C} via

clipping and ψ, ϕ > 0 define the learning rate.

5: end for
Output: Assign label for test sample x as

ŷ = argmaxy

∫
p(y|x, Θ) p(Θ|D)dΘ,

where p(Θ|D) =
∑

η∈{0,1}N p(Θ,η | D) is computed via marginal-

ization. Also obtain the posterior on η at the final iteration of

step 4, {πn ≡ p(ηn,T = 1|ΘT ,D)}, as the anomaly scores.

the value of R indicates the noise level in the corrupted train-

ing set [5]. We fix the size of the training set to be 100 for

each class, with ratio of anomaly samples denoted as ra. The

test set contains 2000 samples from each class.

We first compare the classification accuracy of MED/SVM

using LibSVM [22], Robust-Outlier-Detection (ROD) [5] with

outlier parameter ρ ∈ [0.01, 1] and GEM-MED, under

noise level R = [15, 35, 55, 75] and corruption rate ra =
[0.2, 0.3, 0.4, 0.5]. All the reported results are averaged over

50 runs. Fig 1(a) shows the mean and standard deviation of

the test errors for these models versus various noise level R

(with ra = 0.2), and Fig 1(b) shows the test errors under dif-

ferent corruption rate settings (with R = 55). For ROD, only

ρ ∈ {0.02, 0.2, 0.6} are shown for simplicity, while ρ = 0.02
is the best for ∀ρ ∈ [0.01, 1]. In both experiments, as the

noise level or the corruption rate increases, the training data

become less representative of the test data and the difference

between their distributions increases, which causes a signif-

icant increase of test error for MED/SVM method. While

both ROD and GEM-MED limit the maximal loss values dur-

ing training, and thus prevent over-fitting to anomalies, GEM-

MED outperforms ROD as it incorporates the nonparametric
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prior R(η) that is adaptive to anomalies in the training set,

as opposed to ROD, which relies on the predefined tuning pa-

rameter ρ.

We then evaluate the efficiency of anomaly detection for

various RODs and GEM-MED, under the fixed corruption

rate 0.2. The π′
ns in GEM-MED and RODs are used as

anomaly scores and are placed in ascending order. We com-

pute the precision and recall using this ordering, averaging

over 50 runs. Fig.2(a) plots the precision versus recall curve

for various RODs and GEM-MED, with a snapshot of a typ-

ical result illustrated in Fig.2(b). As seen in both figures, the

anomaly score given by GEM-MED provides more relevant

information about the true anomalies, compared to that given

by RODs. This is due to the additional GEM-based regular-

izer R(η) in GEM-MED, which captures the characteristic

of an anomalous sample based on the relative entropy of the

region in which it resides. GEM-MED, thus, has better per-

formance in terms of the efficiency and accuracy of anomaly

detection than does ROD.
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Fig. 1: (a) Test error (%) vs. noise level R (corruption rate = 0.2). (b) Test

error (%) vs. corrupt rate (R = 55) on simulated data. GEM-MED out-

performs both MED/SVM and ROD for various ρ in classification accuracy,

when either noise level or corrupt rate increases .
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Fig. 2: (a) Recall-precision curve for GEM-MED and RODs on simulated data

(corruption rate = 0.2). (b) Illustration of anomaly score πn for GEM-MED

and ROD-0.2. GEM-MED surpluses ROD in anomaly detection.

4.2. Footstep classification data set

We perform experiments on ARL-Footstep multisensor data

set [17, 16, 23], where the task is to discriminate between hu-

man footsteps and human-leading animal footsteps.The foot-

step data was collected via four well-synchronized acoustic

sensors (labeled as Sensor 1,2,3,4) in a natural environment,

where the environmental noise and multiple sensor failures

corrupted the acoustic recordings. It involves 84 human sub-

jects and 66 human-animal subjects. We randomly select 25
subjects from each class as the training set, with the rest des-

ignated as the test set. In the preprocessing step, footsteps are

detected, extracted and segmented before a 200-dimensional

mel-frequency cepstral coefficients (MFCCs) vector is com-

puted for each segment. We then apply PCA to reduce the

dimensionality from 200 to 50, as in [17, 23]. For multiple

D sensors the augmented feature of dimension 50D is con-

structed via feature concatenation.

In these experiments, we apply kernel MED with the Gaus-

sian kernel K(xi,xj) = exp(−γ‖xi − xj‖
2
2); the kernel pa-

rameter γ > 0 is tuned via 5-fold-cross-validation. A Gaus-

sian Process N (w; 0, I) is used as prior on w. For each sam-

ple n, the prior on ηn is set to p0(ηn) = 1/2.

Table 1 shows the classification accuracy for four individ-

ual sensors and the combination of all four sensors with ker-

nel MED, ROD for ρ ∈ [0.01, 1] and GEM-MED and Ta-

ble 2 shows their respective anomaly detection accuracies.

For ROD only ρ = 0.02 and ρ = 0.20 are shown, while

ρ = 0.20 is the best for ∀ρ ∈ [0.01, 1]. It is seen that the

GEM-MED method outperforms all of the ROD-ρ algorithms

and also outperforms kernel MED in classification accuracy

for sensor 1,2,4 and it demonstrates significant improvement

in detection for sensor 1,3,4. Note that ROD−0.2 has higher

detection accuracy than GEM-MED in sensor 2, since many

anomalous samples in this sensor reside in the high density

region of the data set, which violates the sparse anomaly as-

sumption underlying GEM. For combined sensors, as most of

the anomalies based on the joint feature representation reside

in the high entropy region of the data set, GEM-MED is able

to successfully detect most of the anomalous samples.

Classification Accuracy (%) mean ± standard error

sensor no. kernel MED ROD-0.02 ROD-0.2 GEM-MED

1 71.1± 5.3 73.7± 3.7 76.0± 2.5 78.4± 3.3

2 62.3± 10.2 71.5± 7.3 76.5± 5.3 82.1± 3.1

3 60.0± 13.1 63.2± 5.4 67.6± 4.2 66.8± 4.5
4 58.4± 8.2 71.8± 7.2 73.2± 4.2 80.1± 3.1

1,2,3,4 78.6± 5.1 79.2± 3.7 79.8± 2.5 84.0± 2.3

Table 1: Classification accuracy with different sensors, with the best perfor-

mance shown in bold.

Anomalous Detection Accuracy (%) mean ± standard error

sensor no. ROD-0.02 ROD-0.2 GEM-MED

1 30.2± 1.3 59.0± 3.5 70.5± 1.3

2 23.5± 2.6 63.5± 2.8 63.4± 2.5

3 5.3± 1.4 48.1± 3.3 72.8± 1.5

4 22.8± 3.2 65.2± 4.2 88.1± 2.1

Table 2: Anomalous detection accuracy with different sensors, with the best

performance shown in bold.

5. CONCLUSION

In this paper we propose the GEM-MED algorithm that pro-

vides a unified optimization framework for classification and

anomaly detection. We demonstrate its performance advan-

tages in terms of both classification accuracy and detection

rate on a simulated data set and a real footstep data set, as

compared to the anomaly-blind Ramp-Loss-based classifica-

tion method.
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