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ABSTRACT

We address covariance estimation under mean-squared loss in
the Gaussian setting. Specifically, we consider shrinkage methods
which are suitable for high dimensional problems with smallnum-
ber of samples (largep smalln). First, we improve on the Ledoit-
Wolf (LW) method by conditioning on a sufficient statistic via the
Rao-Blackwell theorem, obtaining a new estimator RBLW whose
mean-squared error dominates the LW under Gaussian model. Sec-
ond, to further reduce the estimation error, we propose an iterative
approach which approximates the clairvoyant shrinkage estimator.
Convergence of this iterative method is proved and a closed form
expression for the limit is determined, which is called the OAS esti-
mator. Both of the proposed estimators have simple expressions and
are easy to compute. Although the two methods are developed from
different approaches, their structure is identical up to specific con-
stants. The RBLW estimator provably dominates the LW method;
and numerical simulations demonstrate that the OAS estimator per-
forms even better, especially whenn is much less thanp.

Index Terms— Shrinkage, covariance estimation, Rao-Blackwell,
mean-squared loss

1. INTRODUCTION

Covariance matrix estimation is a fundamental problem in signal
processing and related fields. Different application varying from
array processing [6] to functional genomics [7] rely on accurately
estimated covariance matrices. In recent years, estimation of high
dimensionalp × p covariance matrices under small sample sizen
has attracted considerable interest. Examples include gene expres-
sion arrays, financial forecasting, spectroscopic imaging, fMRI data
and many others. Classical estimation methods perform poorly in
these settings and this is the main motivation for this work.

The sample covariance is most commonly used as an estimate
for the unknown covariance matrix. When it is invertible, the sam-
ple covariance coincides with the classical maximum likelihood es-
timate. However, while it is an unbiased estimator, it does not min-
imize the mean-squared error. Indeed, Stein demonstrated that su-
perior performance may be obtained by shrinking the sample co-
variance towards a structured estimate [1]. Since then, many shrink-
age estimators have been proposed under different performance mea-
sures,e.g., [2, 3, 4]. The majority of these works addressed the case
of invertible sample covariance whenn > p. Recently, Ledoit and
Wolf (LW) proposed a shrinkage estimator for the casen < p which
asymptotically minimizes the mean-squared error in the covariance
[5]. The estimator is well conditioned under small sample sizes and
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can be applied to high dimensional problems. In contrast to the pre-
vious works, the performance advantages are not restrictedto the
Gaussian assumption and are distribution free.

In this paper, we show that the LW estimator can be significantly
improved when the sample is Gaussian. We begin by providing a
closed form expression for the optimal clairvoyant shrinkage esti-
mator under mean-squared loss criteria. This estimator is an explicit
function of the unknown covariance matrix that can be used asan or-
acle performance bound. Our first estimator is obtained by applying
the classical Rao-Blackwell theorem [9] to the LW method, and is
therefore denoted by RBLW. After tedious integral computations, we
can obtain a simple closed form estimator which provably dominates
the LW method in terms of mean-squared loss. We then introduce an
iterative shrinkage estimator which tries to approximate the oracle.
Beginning with an initial rough estimate, each iteration isdefined
as the oracle solution where the unknown covariance is replaced by
its estimate obtained in the previous iteration. Remarkably, a closed
form expression can be determined for the limit of these iterations,
called the oracle approximating shrinkage (OAS) estimator.

The OAS and RBLW estimators share similar structure. In fact,
we show that this special structure is related to the locallymost pow-
erful invariant test for covariance sphericity [10]. Both methods are
simple, easy to compute and perform well with finite sample size.
The RBLW estimator provably dominates the LW and our numerical
results demonstrate that for small sample sizes, the OAS estimator is
superior to both the RBLW and the LW techniques.

The paper is organized as follows. Section 2 provides a for-
mulation of the problem. We then develop the oracle estimator, the
RBLW estimator and the OAS estimator in Section 3. Section 4 in-
cludes numerical simulation results and we conclude the paper in
Section 5.

Notation: In the following of the paper,(·)T denotes the trans-
pose operator,tr (·) denotes the trace operator,E [·] andE [· |· ] de-
note the expectation and conditional expectation respectively, ‖·‖F

denotes the Frobenius norm of a matrix, and| · | denotes the deter-
minant of a matrix or the absolute value of a scalar.

2. PROBLEM FORMULATION

Let {Xi}
n

i=1 be a sample of independent identical distributedp-
dimensional Gaussian vectors with zero mean and covarianceΣ.
Note that we do not assumen ≥ p. Given these realizations, our
goal is to find an estimator̂Σ ({Xi}

n
i=1) which minimizes the mean-

squared error:
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Σ̂ ({Xi}
n
i=1) − Σ




2

F

�
. (1)

It is impractical to minimize this loss without additional con-
straints and therefore we restrict ourselves to a specific class of es-
timators that employ shrinkage [1, 8]. The classical estimator is the



sample covariancêS defined as

Ŝ =
1

n

nX
i=1

XiX
T
i . (2)

On the other hand, if we assume that the elements ofXi are uncor-
related and of equal variance, an intuitive estimate forΣ is

F̂ = ν̂I, (3)

whereν̂ = tr(Ŝ)/p. This structured estimate will result in reduced
variance but will increase the bias when the diagonal assumption is
incorrect. A reasonable tradeoff achieved by shrinkage ofŜ towards
F̂ results in the following class of estimators

Σ̂ = ρ̂F̂ + (1 − ρ̂)Ŝ, (4)

parameterized by the shrinkage coefficientρ̂. F̂ is also referred to as
the shrinkage target.

Altogether, our goal is to find a shrinkage intensityρ̂ as a func-
tion of the observations{Xi}

n

i=1 in order to minimize the squared
loss in (1).

3. GAUSSIAN SHRINKAGE ESTIMATORS

3.1. The Oracle estimator

The oracle estimator̂ΣO is given by (4) withρ being the solution to

min
ρ

E

�


Σ̂O − Σ
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F

�
s.t. Σ̂O = ρF̂ + (1 − ρ) Ŝ

. (5)

The optimalρ is provided in the following theorem.

Theorem 1. Let {Xi}
n
i=1 be independentp-dimensional Gaussian

vectors with zero mean and covarianceΣ, the optimal solution to (5)
is

ρ =
E
h
tr
��

Σ − Ŝ
��

F̂ − Ŝ
��i

E

�


Ŝ − F̂



2

F

� (6)

=
(1 − 2/p) tr

�
Σ2
�

+ tr2 (Σ)

(n + 1 − 2/p) tr(Σ2) + (1 − n/p)tr2(Σ)
. (7)

Equation (6) was proved in [5] and its mean square optimality
does not depend on the distribution of signals. Under the additional
Gaussian assumption, (7) can be obtained from straightforward eval-
uation of the expectations.

3.2. The Rao-Blackwell Ledoit-Wolf (RBLW) estimator

The starting point for our derivation of the RBLW estimator is the
LW method [5]. Ledoit and Wolf proposed to approximate the oracle
(5) using the following consistent estimate of (6):

ρ̂LW = min

0BB� nP
i=1




XiX
T
i − Ŝ
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n2
h
tr
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Ŝ2
�
− tr2

�
Ŝ
�

/p
i , 1

1CCA. (8)

The LW estimator̂ΣLW is then defined by plugginĝρLW to (4).

The motivation for the RBLW originates from the fact that un-
der the Gaussian assumption, a sufficient statistic for estimatingΣ

is the sample covariancêS in (2). Intuitively, the LW estimator is
a function of ancillary and unnecessary statistics and therefore can
be improved. Specifically, the Rao-Blackwell theorem [9] states that
if g(X) is an estimator of a parameterθ, then the conditional ex-
pectation ofg(X) given T (X), whereT is a sufficient statistic, is
typically a better estimator ofθ, and is at least never worse under
any convex loss criteria. Applying this classical theorem to the LW
estimator yields the following theorem.

Theorem 2. Let {Xi}
n
i=1 be independentp-dimensional Gaussian

vectors with zero mean and covarianceΣ, then the conditioned ex-
pectation of the LW covariance estimator is

Σ̂RBLW = E
h
Σ̂LW

���Ŝ i (9)

= ρ̂RBLW F̂ + (1 − ρ̂RBLW )Ŝ, (10)

where

ρ̂RBLW = min

0� (n − 2)/n · tr
�
Ŝ2
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�
Ŝ
�
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i , 1

1A . (11)

Due to the Rao-Blackwell theorem, this estimator satisfies

E
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The proof of Theorem 2 is quite involved and is omitted for lack
of space.1 It involves the calculation of expectations conditioned on
a Wishart matrix (n ≥ p) and a singular Wishart matrix (n < p) via
Haar integrals. Hereby we list some necessary lemmas.

Lemma 1. If Xi is a p × 1 vector,M is a p × p positive definite
matrix, i.e.,M ≻ 0, then for any integerm > −2,Z

XiXT
i

≺M

‖Xi‖
4

��M − XiX
T
i

�� 12 m

|M |
1

2
(m+1)

dXi =

π
p
2

4

Γ {m/2 + 1}

Γ {(m + p)/2 + 3}

�
2tr(M2) + tr2(M)

�
,

(13)

whereΓ{} is the Gamma function defined byΓ{z} =
R∞

o
tz−1e−tdt.

Lemma 2. If Xi is a p × 1 Gaussian vector with zero mean and
covarianceΣ, then

E
h
‖Xi‖

4
2

�� Ŝi =
n

n + 2

h
2tr

�
Ŝ2
�

+ tr2
�
Ŝ
�i

, (14)

which holds for bothn ≥ p andn < p.

3.3. The Oracle Approximating Shrinkage (OAS) estimator

The OAS estimator is an iterative approximation for the unimple-
mentable oracle method.2 We start from any other estimator as an
initial guess ofΣ and iteratively refine it. The initial guesŝΣ0 could
be the sample covariance, the RBLW estimate or others. We replace
Σ in the oracle estimator bŷΣ0 yielding Σ̂1 which in turn generates

1The reader is referred to [12] for the complete proof.
2Note that a similar iteration scheme is also employed in [8] in the context

of linear regression.



Σ̂2 through our proposed iteration. The iteration process is con-
tinued until convergence and the limit defines the OAS estimator,
denoted aŝΣOAS . Specifically, the proposed iteration is as follows:

Σ̂j = ρ̂j F̂ + (1 − ρ̂j)Ŝ, (15)

ρ̂j+1 =
(1 − 2/p)tr

�
Σ̂j Ŝ

�
+ tr2

�
Σ̂j

�
(n + 1 − 2/p)tr

�
Σ̂j Ŝ

�
+ (1 − n/p)tr2

�
Σ̂j

� . (16)

By comparison between (16) and (11), notice that in (16)tr (Σ)

and tr
�
Σ2
�

are replaced bytr
�
Σ̂j

�
and tr

�
Σ̂j Ŝ

�
, respectively.

We usetr
�
Σ̂j Ŝ

�
instead oftr

�
Σ̂2

j

�
since the latter would always

forcesρ̂j to converge to 1 while the former leads to a more mean-
ingful limiting value.

Theorem 3. The iterative process in (15)∼ (16) converges to the
expressions:

Σ̂OAS = ρ̂OASF̂ + (1 − ρ̂OAS)Ŝ, (17)

ρ̂OAS = min

0� (1 − 2/p)tr
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(18)

as long as the initial̂ρ0 is between 0 and 1.

Proof. Substitute (15) into (16). After simplifications we obtain

ρ̂j+1 =
1 − (1 − 2/p) φ̂ · ρ̂j

1 + nφ̂ − (n + 1 − 2/p) φ̂ · ρ̂j

, (19)

where

φ̂ =
tr
�
Ŝ2
�
− tr2

�
Ŝ
�

/p

tr
�
Ŝ2
�

+ tr2
�
Ŝ
� ∈ [0, 1). (20)

Defineb̂j =
h
1 − (n + 1 − 2/p) φ̂ · ρ̂j

i−1

. Equation (19) is equiv-

alent to

b̂j+1 =
nφ̂

1 − (1 − 2/p)φ̂
· b̂j +

1

1 − (1 − 2/p)φ̂
, (21)

and it is easy to see that

lim
j→∞

b̂j =

8>>><>>>: ∞
nφ̂

1 − (1 − 2/p)φ̂
≥ 1

1

1 − (n + 1 − 2/p)φ̂

nφ̂

1 − (1 − 2/p)φ̂
< 1

,

(22)
thereforeρ̂j also converges asj → ∞ andρ̂I is given by

ρ̂OAS = lim
j→∞

ρ̂j =

8>><>>: 1

(n + 1 − 2/p) φ̂
φ̂ ≥

1

n + 1 − 2/p

1 φ̂ <
1

n + 1 − 2/p

.

(23)
Equation (18) is obtained by substituting (20) into (23). Therefore,
(15) and (16) converge to (17) and (18) asj → ∞.

3.4. Comparison

It is clear that thêρOAS shares the same structure asρ̂RBLW . In
fact, they can both be expressed as

ρ̂OAS = min

�
αOAS +

βOAS

Û
, 1

�
(24)

and

ρ̂RBLW = min

�
αRBLW +

βRBLW

Û
, 1

�
(25)

with Û defined as

Û =
1

p − 1

0�p · tr
�
Ŝ2
�

tr2
�
Ŝ
� − 1

1A , (26)

where

αOAS =
1

n + 1 − 2/p
, βOAS =

p + 1

(n + 1 − 2/p)(p − 1)
, (27)

and

αRBLW =
n − 2

n(n + 2)
, βRBLW =

(p + 1)n − 2

n(n + 2)(p − 1)
. (28)

Thus the only difference between̂ρOAS and ρ̂RBLW is the
shrinkage coefficients. Interestingly, the statisticÛ is also adopted
to test the sphericity ofΣ, i.e., testing whetherΣ = νI . In par-
ticular, Û is the locally most powerful invariant test statistic for
sphericity [10]. The smaller̂U is, the more likelyΣ is proportional
to an identity matrixI , and the more shrinkage occurs inΣ̂OAS and
Σ̂RBLW .

4. NUMERICAL SIMULATIONS

In this section, we compare the RBLW and the OAS with the LW
method by numerical simulation. The oracle estimator (5) isalso
included using the trueΣ as a benchmark lower bound of MSE for
comparison. For all simulations, we setp = 100 and letn range
from 5 to 120. Each simulation is repeated 100 times and the aver-
aged MSE and the shrinkage coefficients are plotted as a function of
n.

In the first example, we letΣ be the covariance matrix of a Gaus-
sian AR(1) process,

Σij = r|i−j|, (29)

whereΣij denotes the entry ofΣ in row i and columnj. We take
r = 0.5 for purposed illustration. Fig. 1 and Fig. 2 show the es-
timated MSE and shrinkage coefficient respectively. One sees that
the OAS performs very closely to the ideal oracle estimator.When
n is small compared withp, the OAS significantly outperforms both
of the RBLW and the LW. The RBLW improves the LW slightly but
this is not easily seen at the scale used for plots in Fig. 1 andFig.
2. As expected, all the estimators converge towards each other asn
increases.

In the second example, we letΣ be the covariance matrix of
the increment process of fractional Brownian motion (FBM) which
exhibits long-range dependence. Such processes are often used to
model Internet traffic [11]. The covariance matrix is given by

Σij =
1

2

h
(|i − j| + 1)2H − 2|i − j|2H + (|i − j| − 1)2H

i
,
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Fig. 1. AR(1) process: Comparison of MSE with differentn when
p = 100, r = 0.5.
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Fig. 2. AR(1) process: Comparison of shrinkage intensity with dif-
ferentn whenp = 100, r = 0.5.

whereH ∈ [0.5, 1] is the Hurst parameter. The typical value ofH
is below 0.9 in practical applications and we setH = 0.75. From
Fig. 3 and Fig. 4 we obtain similar performances of the shrinkage
estimators.

In both of the examples, the oracle shrinkage coefficientρ de-
creases in the sample numbern, which makes sense since(1 − ρ)

can be regarded as “confidence” assigned toŜ. Intuitively, as more
and more observations are available, one has higher confidence in the
sample covariancêS and thereforeρ decreases. This characteristic
is shown byρ̂OAS but not byρ̂RBLW and ρ̂LW . This may partly
explain why the OAS estimator outperforms the RBLW and the LW
estimators with small sample sizes.
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Fig. 3. Incremental FBM process: Comparison of MSE with differ-
entn whenp = 100, Hurst parameterH = 0.75.

5. CONCLUSION

In this paper, we have introduced two new shrinkage estimators of
covariance matrices. The RBLW estimator is proposed to improve
the LW method via the Rao-Blackwell theorem. The OAS estima-
tor is developed by iterating on the optimal oracle estimate, where
the converged limit is determined analytically. The RBLW provably
dominates the LW, and the OAS outperforms both the RBLW and
the LW numerically. The proposed estimators have simple explicit
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Fig. 4. Incremental FBM process: Comparison of shrinkage inten-
sity with differentn whenp = 100, Hurst parameterH = 0.75.

expressions and are easy to implement. Furthermore, they share the
same structure and differ from each other only in the shrinkage co-
efficient.

In this paper we set the shrinkage targetF̂ as the identity ma-
trix. The theory behind the proposed estimators can be extended to
other possible shrinkage targets. An interesting questionfor future
research is how to choose appropriate targets to further reduce the
estimation error.
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