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ABSTRACT

We address covariance estimation under mean-squarednloss

the Gaussian setting. Specifically, we consider shrinkagthoas
which are suitable for high dimensional problems with smaiin-
ber of samples (large smalln). First, we improve on the Ledoit-
Wolf (LW) method by conditioning on a sufficient statistiavihe
Rao-Blackwell theorem, obtaining a new estimator RBLW véhos
mean-squared error dominates the LW under Gaussian moeel. S
ond, to further reduce the estimation error, we proposeeaative
approach which approximates the clairvoyant shrinkagienasor.
Convergence of this iterative method is proved and a closet f
expression for the limit is determined, which is called th&Sesti-
mator. Both of the proposed estimators have simple exressind
are easy to compute. Although the two methods are developad f
different approaches, their structure is identical up tecgfc con-

stants. The RBLW estimator provably dominates the LW method

and numerical simulations demonstrate that the OAS estimper-
forms even better, especially wheris much less thap.

Index Terms— Shrinkage, covariance estimation, Rao-Blackwell,

mean-squared loss

1. INTRODUCTION

Covariance matrix estimation is a fundamental problem gnali
processing and related fields. Different application vagyfrom
array processing [6] to functional genomics [7] rely on aately
estimated covariance matrices. In recent years, estimafihigh
dimensionalp x p covariance matrices under small sample size
has attracted considerable interest. Examples include gepres-
sion arrays, financial forecasting, spectroscopic imagMi| data
and many others. Classical estimation methods performlyaor
these settings and this is the main motivation for this work.

can be applied to high dimensional problems. In contragdtéqte-
vious works, the performance advantages are not restrict¢de
Gaussian assumption and are distribution free.

In this paper, we show that the LW estimator can be signifigant
improved when the sample is Gaussian. We begin by providing a
closed form expression for the optimal clairvoyant shrigeaesti-
mator under mean-squared loss criteria. This estimator éxplicit
function of the unknown covariance matrix that can be usexhas-
acle performance bound. Our first estimator is obtained Ipyayy
the classical Rao-Blackwell theorem [9] to the LW method] &n
therefore denoted by RBLW. After tedious integral compate, we
can obtain a simple closed form estimator which provably idates
the LW method in terms of mean-squared loss. We then intdac
iterative shrinkage estimator which tries to approximate dracle.
Beginning with an initial rough estimate, each iteratiordéfined
as the oracle solution where the unknown covariance isceglay
its estimate obtained in the previous iteration. Remasgkabtlosed
form expression can be determined for the limit of thesaltiens,
called the oracle approximating shrinkage (OAS) estimator
The OAS and RBLW estimators share similar structure. In fact
we show that this special structure is related to the localhgt pow-
erful invariant test for covariance sphericity [10]. Botletinods are
simple, easy to compute and perform well with finite sampte si
The RBLW estimator provably dominates the LW and our nunagric
results demonstrate that for small sample sizes, the OA®asir is
superior to both the RBLW and the LW techniques.

The paper is organized as follows. Section 2 provides a for-
mulation of the problem. We then develop the oracle estim#ie
RBLW estimator and the OAS estimator in Section 3. Sectiom-4 i
cludes numerical simulation results and we conclude thempap
Section 5.

Notation In the following of the paper(~)T denotes the trans-
pose operatotr () denotes the trace operatd?,-] and E [- |-] de-

The sample covariance is most commonly used as an estimatmte the expectation and conditional expectation respygfil-|| ,.

for the unknown covariance matrix. When it is invertiblee tam-
ple covariance coincides with the classical maximum Ih@did es-
timate. However, while it is an unbiased estimator, it doatsmin-
imize the mean-squared error. Indeed, Stein demonstragedst-
perior performance may be obtained by shrinking the sample ¢
variance towards a structured estimate [1]. Since thenyslannk-
age estimators have been proposed under different penficenmea-

suresge.g, [2, 3, 4]. The majority of these works addressed the cas

of invertible sample covariance when> p. Recently, Ledoit and
Wolf (LW) proposed a shrinkage estimator for the case p which

asymptotically minimizes the mean-squared error in theadance
[5]. The estimator is well conditioned under small sampkesiand
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denotes the Frobenius norm of a matrix, and denotes the deter-
minant of a matrix or the absolute value of a scalar.

2. PROBLEM FORMULATION

Let {X;}_, be a sample of independent identical distribuged

%imensional Gaussian vectors with zero mean and covariahce

ote that we do not assume > p. Given these realizations, our
goal is to find an estimatat ({ X; }i,) which minimizes the mean-
squared error:

B [[Bxam -3 )

It is impractical to minimize this loss without additionabre
straints and therefore we restrict ourselves to a specHigsabf es-

timators that employ shrinkage [1, 8]. The classical ediimi the



sample covariancé defined as

i X xF.
i=1

On the other hand, if we assume that the elemenis;ofre uncor-
related and of equal variance, an intuitive estimatefis

S = 2

S|

F =7l 3)

where? = tr(S)/p. This structured estimate will result in reduced

variance but will increase the bias when the diagonal assamis

incorrect. A reasonable tradeoff achieved by shrinkage wivards

F results in the following class of estimators
S =pF+(1-p)S, @

parameterized by the shrinkage coeﬁiciﬁnﬁ is also referred to as

the shrinkage target.

Altogether, our goal is to find a shrinkage intensitgs a func-
tion of the observation§ X;};_, in order to minimize the squared
loss in (1).

3. GAUSSIAN SHRINKAGE ESTIMATORS

3.1. The Oracle estimator
The oracle estimatcto is given by (4) withp being the solution to
min
P
s.t.

wffso-sf]
Yo=pF+(1-p)S

®)

The optimalp is provided in the following theorem.

Theorem 1. Let{X;};-, be independent-dimensional Gaussian
vectors with zero mean and covariantethe optimal solution to (5)

IS
Blu((=-5) (7-3))]
w5l
B (1—2/p)tr (%) +tr* (%)
T (n+1-2/p)tr(Z2) + (1 —n/p)tr(T)

p= (6)

@)

The motivation for the RBLW originates from the fact that un-
der the Gaussian assumption, a sufficient statistic fomasing >
is the sample covariancg in (2). Intuitively, the LW estimator is
a function of ancillary and unnecessary statistics ancetbes can
be improved. Specifically, the Rao-Blackwell theorem [8}s$ that
if g(X) is an estimator of a paramet@r then the conditional ex-
pectation ofg(X) givenT'(X), whereT is a sufficient statistic, is
typically a better estimator df, and is at least never worse under
any convex loss criteria. Applying this classical theorenhie LW
estimator yields the following theorem.

Theorem 2. Let{X;};_; be independent-dimensional Gaussian
vectors with zero mean and covariante then the conditioned ex-
pectation of the LW covariance estimator is

Srerw = E [2LW ‘S] 9)
= ﬁRBLWF +(1- ﬁRBLW)S7 (10)
where
— (n—2)/n- tf (5'2) + trf (S) N 1)
(n+2) [tr (5'2) — tr2 (S) /p]
Due to the Rao-Blackwell theorem, this estimator satisfies
o [[sumn -5 ] <& Jsn 3] a2

The proof of Theorem 2 is quite involved and is omitted foklac
of spacet It involves the calculation of expectations conditioned on
a Wishart matrix ¢ > p) and a singular Wishart matrix.(< p) via
Haar integrals. Hereby we list some necessary lemmas.

Lemma 1. If X; isap x 1 vector, M is ap x p positive definite
matrix, i.e.,M > 0, then for any integem > —2,
| b2 (D

l
'/XiXI.T<M
5 T{m/2+1}

4 T{(m+p)/2+3}

X XT|E™
Xi||4—|M XX,

(13)
[2tr(M2) + tr2(M)] ,

wherel'{} is the Gamma function defined Byz} = [ t* e "dt.

Lemma 2. If X; is ap x 1 Gaussian vector with zero mean and

Equation (6) was proved in [5] and its mean square optimalitycovariances, then

does not depend on the distribution of signals. Under théiadéll
Gaussian assumption, (7) can be obtained from straighafoheval-
uation of the expectations.

3.2. The Rao-Blackwell Ledoit-Wolf (RBLW) estimator

The starting point for our derivation of the RBLW estimatsrthe
LW method [5]. Ledoit and Wolf proposed to approximate thecte
(5) using the following consistent estimate of (6):

n

>

RGEICrN

The LW estimatoB: . is then defined by pluggingLw to (4).

~112
X, X7 —SH
F

®)

ﬁLW = min

E[I1x:13] 9] = nLH 2t (52) + 0 (3)], (4

which holds for botm > p andn < p.

3.3. The Oracle Approximating Shrinkage (OAS) estimator

The OAS estimator is an iterative approximation for the ypiam
mentable oracle methddWe start from any other estimator as an
initial guess oft and iteratively refine it. The initial gueds, could

be the sample covariance, the RBLW estimate or others. Wacep
¥ in the oracle estimator by, yielding £; which in turn generates

1The reader is referred to [12] for the complete proof.
°Note that a similar iteration scheme is also employed inrj8he context
of linear regression.



3, through our proposed iteration. The iteration process is co 3.4. Comparison

tinued until convergence and the limit defines the OAS estma

denoted a&o 4 5. Specifically, the proposed iteration is as follows:

8= piF + (1= p;)S, (15)
(1= 2/p)tr (£,8) + 2 (%)
(n+1—2/p)tr (f]JS) + (1 — n/p)tr? (f]J) ‘

Pi+1 = (16)

By comparison between (16) and (11), notice that in (&6)>)
andtr (X?) are replaced byr (EJ) and tr (EJS) respectively.

It is clear that theppoas shares the same structure@ssrw. In
fact, they can both be expressed as

poas = min (OéOAs + ﬂc;;s , 1) (24)

and

PRBLW = min (OéRBLW + ﬂRgLW , 1) (25)

with U defined as

We usetr (ﬁjﬁ) instead oftr (23) since the latter would always R 1 [petr (52)
forcesp; to converge to 1 while the former leads to a more mean- U= p—1 s (aY K (26)
ingful limiting value. u? (9)
Theorem 3. The iterative process in (15} (16) converges to the Where
expressions: 1 p+1
apas = —————, foas= . (27)
Yoas = poaskF + (1 — poas)S, 17) n+l-2/p (n+1-2/p)(p—1)
( (1= 2/p)tr (82) + 1% (9) ) and
ﬁOAS:min - = 1 P n—2 (p+1)n—2
_ 2) _ 2 = — = —
(n+1-2/p) [tr ) tr S) /p} CRBLW = ooy BrBLW Py Y (28)

(18)
as long as the initiap, is between 0 and 1.

Proof. Substitute (15) into (16). After simplifications we obtain

S 1—(1-2/p)¢-p
S e T
where ( ) ( )
ot (S?) =t (S) /p
= tr (52) 4 tr2 (S 0. 20

N N —1
Defineb; = [1 —(n+1-2/p)¢p-p;| .Equation (19)is equiv-
alent to

b1 = o3, L 21
41 ]+1—(1—2/p)¢’ (21)
and it is easy to see that
oy
lim B = 1-(1-2/p)p
,1m b]_ ~ I
T L né <1
I—(n+1-2/p)p  1—-(1-2/p)$ 2

thereforep; also converges gs— oo andp;y is given by

1 _ <Z> > 1
(n+1-2/p)¢ n+1-2/p
- 1
! < n+1—-2/p
(23)
Equation (18) is obtained by substituting (20) into (23).efidfore,
(15) and (16) converge to (17) and (18)jas> co. |

poas = lim p; =
j—oo

Thus the only difference betweebvas and prerw is the
shrinkage coefficients. Interestingly, the statigfiés also adopted
to test the sphericity oF, i.e, testing whethe®. = vI. In par-
ticular, U is the locally most powerful invariant test statistic for
sphericity [10]. The smallet/ is, the more likelyX is proportional
to an identity matrix/, and the more shrinkage occursiip 45 and
ZA:RBLW-

4. NUMERICAL SIMULATIONS

In this section, we compare the RBLW and the OAS with the LW
method by numerical simulation. The oracle estimator (58l
included using the tru& as a benchmark lower bound of MSE for
comparison. For all simulations, we get= 100 and letn range
from 5 to 120. Each simulation is repeated 100 times and the aver-
aged MSE and the shrinkage coefficients are plotted as adarut
n.

In the first example, we |t be the covariance matrix of a Gaus-
sian AR(1) process,

Sy =l (29)

whereX;; denotes the entry At in row ¢ and columnj. We take

r = 0.5 for purposed illustration. Fig. 1 and Fig. 2 show the es-
timated MSE and shrinkage coefficient respectively. One et
the OAS performs very closely to the ideal oracle estimatéhen

n is small compared witlp, the OAS significantly outperforms both
of the RBLW and the LW. The RBLW improves the LW slightly but
this is not easily seen at the scale used for plots in Fig. 1Fagd

2. As expected, all the estimators converge towards eaehn atn
increases.

In the second example, we I&t be the covariance matrix of
the increment process of fractional Brownian motion (FBMjici
exhibits long-range dependence. Such processes are cftentol
model Internet traffic [11]. The covariance matrix is given b

1 . . .
Sy = 5 [ =l + D = 20i = 5P + (i = ) - 1*7]
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Fig. 1. AR(1) process: Comparison of MSE with differentwhen
p =100, r» = 0.5.

E —+— Oracle

209 —o—O0AS

S 08 ——RBLW ||

g LW

20.7

% 0.6 B TN
05

o

120

Fig. 2. AR(1) process: Comparison of shrinkage intensity with dif
ferentn whenp = 100, » = 0.5.

whereH € [0.5, 1] is the Hurst parameter. The typical value féf

is below 0.9 in practical applications and we $&t= 0.75. From

Fig. 3 and Fig. 4 we obtain similar performances of the shagek
estimators.

In both of the examples, the oracle shrinkage coefficiede-
creases in the sample numberwhich makes sense sin¢e — p)
can be regarded as “confidence” assigned tontuitively, as more
and more observations are available, one has higher conéidiethe
sample covariancé and therefore decreases. This characteristic
is shown bypo as but not by prerw andprw. This may partly
explain why the OAS estimator outperforms the RBLW and the LW
estimators with small sample sizes.

250

200

umJo‘
215

100}

50
0

Fig. 3. Incremental FBM process: Comparison of MSE with differ-
entn whenp = 100, Hurst parametefl = 0.75.

5. CONCLUSION

In this paper, we have introduced two new shrinkage estiraatb
covariance matrices. The RBLW estimator is proposed to ongr

the LW method via the Rao-Blackwell theorem. The OAS estima-

tor is developed by iterating on the optimal oracle estimateere
the converged limit is determined analytically. The RBLV@yably

dominates the LW, and the OAS outperforms both the RBLW and

the LW numerically. The proposed estimators have simpldi@xp

Shrinkage coefficient

Fig. 4. Incremental FBM process: Comparison of shrinkage inten-
sity with differentn whenp = 100, Hurst parametefl = 0.75.

expressions and are easy to implement. Furthermore, tlaeg tie
same structure and differ from each other only in the shgekeo-
efficient. R

In this paper we set the shrinkage targets the identity ma-
trix. The theory behind the proposed estimators can be égteto
other possible shrinkage targets. An interesting qued$tiofuture
research is how to choose appropriate targets to furthercesthe
estimation error.
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