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Abstract—Recent work in distance metric learning has focused
on learning transformations of data that best align with specified
pairwise similarity and dissimilarity constraints, often supplied
by a human observer. The learned transformations lead to
improved retrieval, classification, and clustering algorithms due
to the better adapted distance or similarity measures. Here, we
address the problem of learning these transformations when the
underlying constraint generation process is nonstationary. This
nonstationarity can be due to changes in either the ground-
truth clustering used to generate constraints or changes in the
feature subspaces in which the class structure is apparent. We
propose Online Convex Ensemble StrongLy Adaptive Dynamic
Learning (OCELAD), a general adaptive, online approach for
learning and tracking optimal metrics as they change over time
that is highly robust to a variety of nonstationary behaviors
in the changing metric. We apply the OCELAD framework to
an ensemble of online learners. Specifically, we create a retro-
initialized composite objective mirror descent (COMID) ensemble
(RICE) consisting of a set of parallel COMID learners with
different learning rates, demonstrate RICE-OCELAD on both
real and synthetic data sets and show significant performance
improvements relative to previously proposed batch and online
distance metric learning algorithms.

I. INTRODUCTION

THe effectiveness of many machine learning and data
mining algorithms depends on an appropriate measure of

pairwise distance between data points that accurately reflects
the learning task, e.g., prediction, clustering or classification.
The kNN classifier, K-means clustering, and the Laplacian-
SVM semi-supervised classifier are examples of such distance-
based machine learning algorithms. In settings where there is
clean, appropriately-scaled spherical Gaussian data, standard
Euclidean distance can be utilized. However, when the data
is heavy tailed, multimodal, or contaminated by outliers,
observation noise, or irrelevant or replicated features, use of
Euclidean inter-point distance can be problematic, leading to
bias or loss of discriminative power.

To reduce bias and loss of discriminative power of distance-
based machine learning algorithms, data-driven approaches for
optimizing the distance metric have been proposed. These
methodologies, generally taking the form of dimensionality
reduction or data “whitening”, aim to utilize the data itself
to learn a transformation of the data that embeds it into a
space where Euclidean distance is appropriate. Examples of
such techniques include Principal Component Analysis [1],
Multidimensional Scaling [2], covariance estimation [2], [1],
and manifold learning [3]. Such unsupervised methods do not
exploit human input on the distance metric, and they overly
rely on prior assumptions, e.g., local linearity or smoothness.
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In distance metric learning one seeks to learn transforma-
tions of the data associated with a distance metric that is well
matched to a particular task specified by the user. Point labels
or constraints indicating point similarity or dissimilarity are
used to learn a transformation of the data such that similar
points are “close” to one another and dissimilar points are
distant in the transformed space. Learning distance metrics
in this manner allows a more precise notion of distance or
similarity to be defined that is better related to the task at
hand.

Many supervised and semi-supervised distance metric learn-
ing approaches have been developed [4]. This includes online
algorithms [5] with regret guarantees for situations where
similarity constraints are received sequentially.

This paper proposes a new distance metric tracking method
that is applicable to the non-stationary time varying case
of distance metric drift and has provably strongly adaptive
tracking performance.

Specifically, we suppose the underlying ground-truth (or
optimal) distance metric from which constraints are gener-
ated is evolving over time, in an unknown and potentially
nonstationary way. We propose a strongly adaptive, online
approach to track the underlying metric as the constraints
are received. We introduce a framework called Online Convex
Ensemble StrongLy Adaptive Dynamic Learning (OCELAD),
which at every time step evaluates the recent performance of
and optimally combines the outputs of an ensemble of online
learners, each operating under a different drift-rate assumption.
We prove strong bounds on the dynamic regret of every
subinterval, guaranteeing strong adaptivity and robustness to
nonstationary metric drift such as discrete shifts, slow drift
with a widely-varying drift rate, and all combinations thereof.
Applying OCELAD to the problem of nonstationary metric
learning, we find that it gives excellent robustness and low
regret when subjected to all forms of nonstationarity.

A. Related Work

Linear Discriminant Analysis (LDA) and Principal Com-
ponent Analysis (PCA) are classic examples of using linear
transformations for projecting data into more interpretable low
dimensional spaces. Unsupervised PCA seeks to identify a set
of axes that best explain the variance contained in the data.
LDA takes a supervised approach, minimizing the intra-class
variance and maximizing the inter-class variance given class
labeled data points.

Much of the recent work in Distance Metric Learning has
focused on learning Mahalanobis distances on the basis of
pairwise similarity/dissimilarity constraints. These methods
have the same goals as LDA; pairs of points labeled “similar”
should be close to one another while pairs labeled “dissimilar”



2

should be distant. MMC [6], a method for identifying a
Mahalanobis metric for clustering with side information, uses
semidefinite programming to identify a metric that maximizes
the sum of distances between points labeled with different
classes subject to the constraint that the sum of distances
between all points with similar labels be less than some
constant.

Large Margin Nearest Neighbor (LMNN) [7] similarly uses
semidefinite programming to identify a Mahalanobis distance.
In this setting, the algorithm minimizes the sum of distances
between a given point and its similarly labeled neighbors
while forcing differently labeled neighbors outside of its
neighborhood. This method has been shown to be computa-
tionally efficient [8] and, in contrast to the similarly motivated
Neighborhood Component Analysis [9], is guaranteed to con-
verge to a globally optimal solution. Information Theoretic
Metric Learning (ITML) [10] is another popular Distance
Metric Learning technique. ITML minimizes the Kullback-
Liebler divergence between an initial guess of the matrix that
parameterizes the Mahalanobis distance and a solution that
satisfies a set of constraints. For surveys of the vast metric
learning literature, see [4], [11], [12].

In a dynamic environment, it is necessary to track the
changing metric at different times, computing a sequence of
estimates of the metric, and to be able to compute those
estimates online. Online learning [13] meets these criteria by
efficiently updating the estimate every time a new data point
is obtained, instead of solving an objective function formed
from the entire dataset. Many online learning methods have
regret guarantees, that is, the loss in performance relative
to a batch method is provably small [13], [14]. In practice,
however, the performance of an online learning method is
strongly influenced by the learning rate, which may need to
vary over time in a dynamic environment [15], [16], [17],
especially one with changing drift rates.

Adaptive online learning methods attempt to address the
learning rate problem by continuously updating the learn-
ing rate as new observations become available. For learning
static parameters, AdaGrad-style methods [16], [17] perform
gradient descent steps with the step size adapted based on
the magnitude of recent gradients. Follow the regularized
leader (FTRL) type algorithms adapt the regularization to
the observations [18]. Recently, a method called Strongly
Adaptive Online Learning (SAOL) has been proposed for
learning parameters undergoing K discrete changes when the
loss function is bounded between 0 and 1. SAOL maintains
several learners with different learning rates and randomly
selects the best one based on recent performance [15]. Several
of these adaptive methods have provable regret bounds [18],
[19], [20]. These typically guarantee low total regret (i.e. regret
from time 0 to time T ) at every time [18]. SAOL, on the other
hand, attempts to have low static regret on every subinterval,
as well as low regret overall [15]. This allows tracking of
discrete changes, but not slow drift. Our work improves upon
the capabilities of SAOL by allowing for unbounded loss
functions, using a convex combination of the ensemble instead
of simple random selection, and providing guaranteed low
regret when all forms of nonstationarity occur, not just discrete

shifts. All of these additional capabilities are shown in the
results to be critical for good metric learning performance.

The remainder of this paper is structured as follows. In
Section II we formalize the time varying distance metric
tracking problem, and section III presents the basic COMID
online learner and our Retro-Initialized COMID Ensemble
(RICE) of learners with dyadically scaled learning rates.
Section IV presents our OCELAD algorithm, a method of
adaptively combining learners with different learning rates.
Strongly adaptive bounds on the dynamic regret of OCELAD
and RICE-OCELAD are presented in Section V, and results
on both synthetic data and a text review dataset are presented
in Section VI. Section VII concludes the paper.

II. NONSTATIONARY METRIC LEARNING

Metric learning seeks to learn a metric that encourages data
points marked as similar to be close and data points marked
as different to be far apart. The time-varying Mahalanobis
distance at time t is parameterized by Mt as

d2
Mt

(x, z) = (x− z)TMt(x− z) (1)

where Mt ∈ Rn×n � 0.
Suppose a temporal sequence of similarity constraints are

given, where each constraint is the triplet (xt, zt, yt), xt and
zt are data points in Rn, and the label yt = +1 if the points
xt, zt are similar at time t and yt = −1 if they are dissimilar.

Following [5], we introduce the following margin based
constraints:

t|yt = 1 : d2
Mt

(xt, zt) ≤ µ− 1; (2)

t|yt = −1 : d2
Mt

(xt, zt) ≥ µ+ 1,

where µ is a threshold that controls the margin between similar
and dissimilar points. A diagram illustrating these constraints
and their effect is shown in Figure 1. These constraints are
softened by penalizing violation of the constraints with a
convex loss function `. This gives a loss function

L({Mt, µ}) =
1

T

T∑
t=1

`(yt(µ− uTt Mtut)) + ρr(Mt) (3)

=
1

T

T∑
t=1

ft(Mt, µ),

where ut = xt−zt, r is the regularizer and ρ the regularization
parameter. Kunapuli and Shavlik [5] propose using nuclear
norm regularization (r(M) = ‖M‖∗) to encourage projection
of the data onto a low dimensional subspace (feature selec-
tion/dimensionality reduction), and we have also had success
with the elementwise L1 norm (r(M) = ‖vec(M)‖1). In what
follows, we develop an adaptive online method to minimize
the loss subject to nonstationary smoothness constraints on the
sequence of metric estimates Mt.

III. RETRO-INITIALIZED COMID ENSEMBLE (RICE)

Viewing the acquisition of new data points as stochastic
realizations of the underlying distribution [5] suggests the use
of composite objective stochastic mirror descent techniques
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Fig. 1. Visualization of the margin based constraints (2), with colors indicating class. The goal of the metric learning constraints is to move target neighbors
towards the point of interest (POI), while moving points from other classes away from the target neighborhood.

(COMID). For convenience, we set `t(Mt, µt) = `(yt(µ −
uTt Mtut)).

For the loss (3) and learning rate ηt, COMID [14] gives

M̂t+1 = arg min
M�0

Bψ(M, M̂t) (4)

+ ηt〈∇M `t(M̂t, µ̂t),M− M̂t〉+ ηtρ‖M‖∗
µ̂t+1 = arg min

µ≥1
Bψ(µ, µ̂t) + ηt∇µ`t(M̂t, µ̂t)

′(µ− µ̂t),

where Bψ is any Bregman divergence. In [5] a closed-
form algorithm for solving the minimization in (17) with
r(M) = ‖M‖∗ is developed for a variety of common losses
and Bregman divergences, involving rank one updates and
eigenvalue shrinkage.

The output of COMID depends strongly on the choice of
ηt. Critically, the optimal learning rate ηt depends on the
rate of change of Mt [21], and thus will need to change
with time to adapt to nonstationary drift. Choosing an optimal
sequence for ηt is clearly not practical in an online setting
with nonstationary drift, since the drift rate is changing. We
thus propose to maintain an ensemble of learners with a range
of ηt values, whose output we will adaptively combine for
optimal nonstationary performance. If the range of ηt is diverse
enough, one of the learners in the ensemble should have good
performance on every interval. Critically, the optimal learner
in the ensemble may vary widely with time, since the drift
rate and hence the optimal learning rate changes in time. For
example, if a large discrete change occurs, the fast learners
are optimal at first, followed by increasingly slow learners
as the estimate of the new value improves. In other words,
the optimal approach is fast reaction followed by increasing
refinement, in a manner consistent with the attractive O(1/

√
t)

decay of the learning rate of optimal nonadaptive algorithms.
Define a set I of intervals I = [tI1, tI2] such that the lengths

|I| of the intervals are proportional to powers of two, i.e. |I| =
I02j , j = 0, . . . , with an arrangement that is a dyadic partition
of the temporal axis, as in [15]. The first interval of length |I|
starts at t = |I| (see Figure 2), and additional intervals of
length |I| exist such that the rest of time is covered.

Every interval I is associated with a base COMID learner
that operates on that interval. Each learner (17) has a constant

learning rate proportional to the inverse square of the length
of the interval, i.e. ηt(I) = η0/

√
|I|. Each learner (besides

the coarsest) at level j (|I| = I02j) is initialized to the last
estimate of the next coarsest learner (level j−1) (see Figure 2).
This strategy is equivalent to “backdating” the interval learners
so as to ensure appropriate convergence has occurred before
the interval of interest is reached, and is effectively a quantized
square root decay of the learning rate. We call our method of
forming an ensemble of COMID learners on dyadically nested
intervals the Retro-Initialized COMID Ensemble, or RICE, and
summarize it in Figure 2.

At a given time t, a set ACT(t) ⊆ I of floor(log2 t)
intervals/COMID learners are active, running in parallel. Be-
cause the metric being learned is changing with time, learners
designed for low regret at different scales (drift rates) will have
different performance (analogous to the classical bias/variance
tradeoff). In other words, there is a scale Iopt optimal at a given
time.

To adaptively select and fuse the outputs of the ensemble,
we introduce Online Convex Ensemble StrongLy Adaptive
Dynamic Learning (OCELAD), a method that accepts an
ensemble of black-box learners and uses recent history to
select the optimal one at each time.

IV. OCELAD

To maintain generality, in this section we assume the series
of random loss functions of the form `t(θt) where θt is
the time-varying unknown parameters. We assume that an
ensemble B of online learners is provided on the dyadic
interval set I, each optimized for the appropriate scale. To
select the appropriate scale, we compute weights wt(I) that
are updated based on the learner’s recent estimated regret. The
weight update we use is inspired by the multiplicative weight
(MW) literature [22], modified to allow for unbounded loss
functions. At each step, we rescale the observed losses so they
lie between -1 and 1, allowing for maximal selection ability
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Fig. 2. Retro-initialized COMID ensemble (RICE). COMID learners at multiple scales run in parallel. Recent observed losses for each learner are used to
create weights used to select the appropriate scale at each time. Each yellow and red learner is initialized by the output of the previous learner of the same
color, that is, the learner of the next shorter scale.

and preventing negative weights.

rt(I) =

(∑
I

wt(I)∑
I wt(I)

`t(θt(I))

)
− `t(θt(I)) (5)

wt+1(I) =wt(I)

(
1 + ηI

rt(I)

maxI∈ACT(t) |rt(I)|

)
, ∀t ∈ I.

These hold for all I ∈ I, where ηI = min{1/2, 1/
√
|I|},

Mt(I), µt(I) are the outputs at time t of the learner on interval
I , and rt(I) is called the estimated regret of the learner on
interval I at time t. The initial value of w(I) is ηI . Essentially,
this is highly weighting low loss learners and lowly weighting
high loss learners.

For any given time t, the outputs of the learners of interval
I ∈ ACT(t) are combined to form the weighted ensemble
estimate

θ̂t =

∑
I∈ACT(t) wt(I)θt(I)∑

I∈ACT(t) wt(I)
(6)

The weighted average of the ensemble is reasonable here due
to our use of a convex loss function (proven in the next
section), as opposed to the possibly non-convex losses of [22],
necessitating a randomized selection approach. OCELAD is
summarized in Algorithm 1, and the joint RICE-OCELAD
approach as applied to metric learning of {Mt, µt} is shown
in Algorithm 2.

Algorithm 1 Online Convex Ensemble Strongly Adaptive
Dynamic Learning (OCELAD)

1: Provide dyadic ensemble of online learners B.
2: Initialize weight: w1(I).
3: for t = 1 to T do
4: Observe loss function `t(·) and update B ensemble.
5: Obtain |ACT(t)| estimates θt(I) from the B ensemble.
6: Compute weighted ensemble average θ̂t via (6) and set

as estimate.
7: Update weights wt+1(I) via (5).
8: end for
9: Return {θ̂t}.

Algorithm 2 RICE-OCELAD for Nonstationary Metric Learn-
ing

1: Initialize weight: w1(I)
2: for t = 1 to T do
3: Obtain constraint (xt, zt, yt), compute loss function

`t,c(Mt, µt).
4: Initialize new learner in RICE if needed. New learner

at scale j > 0: initialize to the last estimate of learner
at scale j − 1.

5: COMID update Mt(I), µt(I) using (17) for all active
learners in RICE ensemble.

6: Compute

M̂t ←
∑
I∈ACT(t) wt(I)Mt(I)∑

I∈ACT(t) wt(I)

µ̂t ←
∑
I∈ACT(t) wt(I)µt(I)∑

I∈ACT(t) wt(I)
.

7: for I ∈ ACT(t) do
8: Compute estimated regret rt(I) and update weights

according to (5) with θt(I) = {Mt(I), µt(I)}.
9: end for

10: end for
11: Return {M̂t, µ̂t}.

V. STRONGLY ADAPTIVE DYNAMIC REGRET

The standard static regret is defined as

RB,static(I) =
∑
t∈I

ft(θ̂t)−min
θ∈Θ

∑
t∈I

ft(θ). (7)

where ft(θt) is a loss with parameter θt. Since in our case
the optimal parameter value θt is changing, the static regret
of an algorithm B on an interval I is not useful. Instead, let
w = {θt}t∈[0,T ] be an arbitrary sequence of parameters. Then,
the dynamic regret of an algorithm B relative to a comparator
sequence w on the interval I is defined as

RB,w(I) =
∑
t∈I

ft(θ̂t)−
∑
t∈I

ft(θt), (8)

where θ̂t are generated by B. This allows for a dynamically
changing estimate.
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In [21] the authors derive dynamic regret bounds that hold
over all possible sequences w such that

∑
t∈I ‖θt+1−θt‖ ≤ γ,

i.e. bounding the total amount of variation in the estimated
parameter. Without this temporal regularization, minimizing
the loss would cause θt to grossly overfit. In this sense, setting
the comparator sequence w to the “ground truth sequence” or
“batch optimal sequence” both provide meaningful intuitive
bounds.

Strongly adaptive regret bounds [15] have claimed that static
regret is low on every subinterval, instead of only low in the
aggregate. We use the notion of dynamic regret to introduce
strongly adaptive dynamic regret bounds, proving that dynamic
regret is low on every subinterval I ⊆ [0, T ] simultaneously.
In a later work, we prove the following. Suppose there are
a sequence of random loss functions `t(θt). The goal is to
estimate a sequence θ̂t that minimizes the dynamic regret.

Theorem 1. Let w = {θ1, . . . , θT } be an arbitrary sequence
of parameters and define γw(I) =

∑
q≤t<s ‖θt+1 − θt‖ as a

function of w and an interval I = [q, s]. Choose an ensemble
of learners B such that given an interval I the learner BI
creates an output sequence θt(I) satisfying the dynamic regret
bound

RBI ,w(I) ≤ C(1 + γw(I))
√
|I| (9)

for some constant C > 0. Then the strongly adaptive dynamic
learner OCELADB using B as the ensemble creates an
estimation sequence θ̂t satisfying

ROCELADB,w(I) ≤ 8C(1 + γw(I))
√
|I|+ 40 log(s+ 1)

√
|I|

on every interval I = [q, s] ⊆ [0, T ].

In a dynamic setting, bounds of this type are particularly
desirable because they allow for changing drift rate and
guarantee quick recovery from discrete changes. For instance,
suppose K discrete switches (large parameter changes or
changes in drift rate) occur at times ti satisfying 0 = t0 <
t1 < · · · < tK = T . Then since

∑K
i=1

√
|ti−1 − ti| ≤

√
KT ,

this implies that the total expected dynamic regret on [0, T ]
remains low (O(

√
KT )), while simultaneously guaranteeing

that an appropriate learning rate is achieved on each subinter-
val [ti, ti+1].

Now, reconsider the dynamic metric learning problem of
Section II. It is reasonable to assume that the transformed
distance between any two points is bounded, implying ‖M‖ ≤
c′ and that `t(Mt, µt) ≤ k = `(c′maxt ‖xt− zt‖22). Thus the
loss (and the gradient) are bounded. We can then show the
COMID learners in the RICE ensemble have low dynamic
regret. The proof of the following result is omitted for lack of
space, and derives from a result in [21].

Corollary 1 (Dynamic Regret: Metric Learning COMID). Let
the sequence M̂t, µ̂t be generated by (17), and let w =
{Mt}Tt=1 be an arbitrary sequence with ‖Mt‖ ≤ c. Then
using ηt+1 ≤ ηt gives

Rw([0, T ]) ≤ Dmax

ηT+1
+

4φmax
ηT

γ +
G2
`

2σ

T∑
t=1

ηt (10)

and setting ηt = η0/
√
T ,

Rw([0, T ]) (11)

≤
√
T

(
Dmax + 4φmax(

∑
t ‖Mt+1 −Mt‖F )

η0
+
η0G

2
`

2σ

)
=O

(
√
T

[
1 +

T∑
t=1

‖Mt+1 −Mt‖F

])
. (12)

Since the COMID learners have low dynamic regret, we can
use OCELAD on the RICE ensemble.

Theorem 2 (RICE-OCELAD Strongly Adaptive Dynamic
Regret). Let w = {Mt}t∈[0,T ] be any sequence of metrics
with ‖Mt‖ ≤ c on the interval [0, T ], and define γw(I) =∑
t∈I ‖Mt+1 − Mt‖. Let B be the RICE ensemble with

ηt(I) = η0/
√
|I|. Then the RICE-OCELAD metric learning

algorithm (Algorithm 2) satisfies

ROCELAD,w(I) ≤ (13)
4

21/2 − 1
C(1 + γw(I))

√
|I|+ 40 log(s+ 1)

√
|I|,

for every subinterval I = [q, s] ⊆ [0, T ] simultaneously. C is
a constant, and the expectation is with respect to the random
output of the algorithm.

VI. RESULTS

A. Synthetic Data

We run our metric learning algorithms on a synthetic dataset
undergoing different types of simulated metric drift. We create
a synthetic 2000 point dataset with 2 independent 50-20-30%
clusterings (A and B) in disjoint 3-dimensional subspaces
of R25. The clusterings are formed as 3-D Gaussian blobs,
and the remaining 19-dimensional subspace is filled with iid
Gaussian noise.

We create a scenario exhibiting nonstationary drift, combin-
ing continuous drifts and shifts between the two clusterings
(A and B). To simulate continuous drift, at each time step
we perform a small random rotation of the dataset. The drift
profile is shown in 3. For the first interval, partition A is used
and the dataset is static, no drift occurs. Then, the partition is
changed to B, followed by an interval of first moderate, then
fast, and then moderate drift. Finally, the partition reverts back
to A, followed by slow drift.

We generate a series of T constraints from random pairs of
points in the dataset, incorporating the simulated drift, running
each experiment with 3000 random trials. For each experiment
conducted in this section, we evaluate performance using two
metrics. We plot the K-nearest neighbor error rate, using the
learned embedding at each time point, averaging over all
trials. We quantify the clustering performance by plotting the
empirical probability that the normalized mutual information
(NMI) of the K-means clustering of the unlabeled data points
in the learned embedding at each time point exceeds 0.8 (out
of a possible 1). We believe clustering NMI, rather than k-NN
performance, is a more realistic indicator of metric learning
performance, at least in the case where finding a relevant
embedding is the primary goal.
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Fig. 3. Tracking of a changing metric. Top: Rate of change (scaled Frobenius norm per tick) of the generating metric as a function of time. The large changes
result from a change in clustering labels. Metric tracking performance is computed for RICE-OCELAD (adaptive), nonadaptive COMID [5] (high learning
rate), nonadaptive COMID (low learning rate), the batch solution (LMNN) [7], SAOL [15] and online ITML [10], averaged over 3000 random trials. Shown
as a function of time is the mean k-NN error rate (middle) and the probability that the k-means NMI exceeds 0.8 (bottom). Note that RICE-OCELAD alone
is able to effectively adapt to the variety of discrete changes and changes in drift rate, and that for NMI ITML and SAOL fail completely.

In our results, we consider RICE-OCELAD, SAOL with
COMID [15], nonadaptive COMID [5], LMNN (batch) [7],
and online ITML [10].

For RICE-OCELAD, we set the base interval length I0 = 1
throughout, and set η0 via cross-validation in a scenario with
no drift. All parameters for the other algorithms were set via
cross validation, so as to err on the side of optimism in a
truly online scenario. For nonadaptive COMID, we set the
high learning rate using cross validation for moderate drift,
and we set the low learning rate via cross validation in the
case of no drift. The results are shown in Figure 3. Online
ITML fails due to its bias agains low-rank solutions [10], and

the batch method and low learning rate COMID fail due to an
inability to adapt. The high learning rate COMID does well
at first, but as it is optimized for slow drift it cannot adapt
to the changes in drift rate as well or recover quickly from
the two partition changes. SAOL, as it is designed for mildly-
varying bounded loss functions without slow drift and does not
use retro-initialized learners, completely fails in this setting
(zero probability of NMI ¿ .8 throughout). RICE-OCELAD,
on the other hand, adapts well throughout the entire interval,
as predicted by the theory.
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Fig. 4. Metric learning for product type clustering. Book reviews blue,
electronics reviews red. Original LOO k-NN error rate 15.3%. Top: First two
dimensions of learned RICE-OCELAD embedding (LOO k-NN error rate
11.3%). Bottom: embedding from PCA (k-NN error 20.4%). Note improved
separation of the clusters using RICE-OCELAD (cleaner border).

B. Clustering Product Reviews

As an example real data task, we consider clustering Ama-
zon text reviews, using the Multi-Domain Sentiment Dataset
[23]. We use the 11402 reviews from the Electronics and
Books categories, and preprocess the data by computing
word counts for each review and 2369 commonly occurring
words, thus creating 11402 data points in R2369. Two possible
clusterings of the reviews are considered: product category
(books or electronics) and sentiment (positive: star rating 4/5
or greater, or negative: 2/5 or less).

Figures 4 and 5 show the first two dimensions of the
embeddings learned by static COMID for the category and
sentiment clusterings respectively. Also shown are the 2-
dimensional standard PCA embeddings, and the k-NN clas-
sification performance both before embedding and in each
embeddings. As expected, metric learning is able to find
embeddings with improved class separability. We emphasize

(a) OCELAD

-300 -250 -200 -150 -100 -50 0

-60

-40

-20
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20

40
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80

(b) PCA

Fig. 5. Metric learning for sentiment clustering. Positive reviews blue, nega-
tive red. Original LOO k-NN error rate 35.7%. Top: First two dimensions of
learned RICE-OCELAD embedding (LOO k-NN error rate 23.5%). Bottom:
embedding from PCA (k-NN error 41.9%). Note improved separation of the
clusters using RICE-OCELAD.

that while improvements in k-NN classification are observed,
we use k-NN merely as a way to quantify the separability of
the classes in the learned embeddings. In these experiments,
we set the regularizer r(·) to the elementwise L1 norm to
encourage sparse features.

We then conducted drift experiments where the clustering
changes. The change happens after the metric learner for
the original clustering has converged, hence the nonadaptive
learning rate is effectively zero. For each change, we show the
k-NN error rate in the learned RICE-OCELAD embedding as
it adapts to the new clustering. Emphasizing the visualization
and computational advantages of a low-dimensional embed-
ding, we computed the k-NN error after projecting the data
into the first 5 dimensions of the embedding. Also shown are
the results for a learner where an oracle allows reinitialization
of the metric to the identity at time zero, and the nonadaptive
learner for which the learning rate is not increased. Figure 6
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Fig. 6. Metric drift in Amazon review data. Left: Change from product type +
sentiment clustering to simply product type; Right: Change from sentiment to
product type clustering. The proposed OCELAD adapts to changes, tracking
the clusters as they evolve. The oracle reinitialized mirror descent method
(COMID) learner has higher tracking error and the nonadaptive learner
(straight line) does not track the changes at all.

(left) shows the results when the clustering changes from the
four class sentiment + type partition to the two class product
type only partition, and Figure 6 (right) shows the results
when the partition changes from sentiment to product type.
In the first case, the similar clustering allows RICE-OCELAD
to significantly outperform even the reinitialized method, and
in the second remain competitive where the clusterings are
unrelated.

VII. CONCLUSION AND FUTURE WORK

Learning a metric on a complex dataset enables both unsu-
pervised methods and/or a user to home in on the problem of
interest while de-emphasizing extraneous information. When
the problem of interest or the data distribution is nonstation-
ary, however, the optimal metric can be time-varying. We
considered the problem of tracking a nonstationary metric
and presented an efficient, strongly adaptive online algorithm
(OCELAD), that combines the outputs of any black box
learning ensemble (such as RICE), and has strong theoretical

regret guarantees. Performance of our algorithm was evaluated
both on synthetic and real datasets, demonstrating its ability to
learn and adapt quickly in the presence of changes both in the
clustering of interest and in the underlying data distribution.

Potential directions for future work include the learning of
more expressive metrics beyond the Mahalanobis metric, the
incorporation of unlabeled data points in a semi-supervised
learning framework [24], and the incorporation of an active
learning framework to select which pairs of data points to
obtain labels for at any given time [25].
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