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Abstract—In this paper, a new nonlinear generalization of linear
canonical correlation analysis (LCCA) is derived. This framework, called
measure transformed canonical correlation analysis (MTCCA), applies
LCCA to the considered pair of random vectors after transformation of
their joint probability distribution. The proposed transform is structured
by a pair of nonnegative functions called the MT-functions. It preserves
statistical independence and maps the joint probability distribution into a
set of joint probability measures on the joint observation space. Specifica-
tion of MT-functions in the exponential family, leads to MTCCA, which,
in contrast to LCCA, is capable of detecting nonlinear dependencies. In
the paper, MTCCA is illustrated for recovery of a nonlinear system with
known structure, and for construction of networks that analyze long-
term associations between companies traded in the NASDAQ and NYSE
stock markets.

Index Terms—Association analysis, multivariate data analysis, proba-
bility measure transform.

I. INTRODUCTION

Linear canonical correlation analysis (LCCA) [1] is a technique
for multivariate data analysis that quantifies the linear associations
between a pair of random vectors. In particular, LCCA generates a
sequence of pairwise linear combinations of the considered random
vectors that have the following statistical properties under their joint
probability distribution: 1) each linear combination has unit variance,
2) the correlation coefficient between the elements of each pair is
maximal, and 3) each pair is uncorrelated with its predecessors.
The coefficients of these linear combinations give insight into the
underlying linear relationships between the random vectors. They are
easily obtained by solving a simple generalized eigenvalue decom-
position (GEVD) problem, which only involves the covariance and
cross-covariance matrices of the considered random vectors. LCCA
has been applied to blind source separation [2], image set matching
[3], direction-of-arrival estimation [4], data fusion [5], audio-video
synchronization [6], among others.

In cases where the considered random vectors are statistically
dependent yet uncorrelated, LCCA is not an informative tool. In
order to overcome this limitation, several nonlinear generalizations of
LCCA have been proposed in the literature. In [7], an information-
theoretic approach to canonical correlation analysis was proposed that
replaces the correlation coefficient with the mutual-information (MI).
The MI approach [7] is sensitive to nonlinear dependencies. However,
in contrast to LCCA, it does not reduce to a simple GEVD problem.
Indeed, in [7] each pair of linear combinations is obtained separately
via an iterative Newton-Raphson algorithm, which may converge
to undesired local maxima. Moreover, each step of the algorithm
involves re-estimation of the MI in a non-parametric manner at a
potentially high computational cost.

Another nonlinear generalization of LCCA is kernel canonical
correlation analysis (KCCA) [8]. KCCA applies LCCA to high-
dimensional nonlinear transformations of the considered random
vectors that map them into some reproducing kernel Hilbert spaces.
Although the KCCA approach can be successful in extracting non-
linear relations, it is highly prone to over-fitting errors, and requires

regularization of the covariance matrices of the transformed random
vectors. Moreover, the nonlinear mappings of the random vectors
may mask the dependencies between their original coordinates.

In this paper, a new nonlinear generalization of LCCA is derived,
which does not suffer from the limitations of the MI and KCCA
approaches. This framework, called measure transformed canonical
correlation analysis (MTCCA) applies LCCA to the considered ran-
dom vectors after transformation of their joint probability distribution.

The proposed transform is structured by a pair of nonnegative
functions, called the MT-functions. It preserves statistical indepen-
dence and maps the joint probability distribution into a set of
probability measures on the joint observation space. By modifying
the MT-functions, the correlation coefficient under the transformed
probability measure, called the MT-correlation coefficient, is modi-
fied, resulting in a new general framework for canonical correlation
analysis. In MTCCA, the MT-correlation coefficients between the
elements of each generated pair of linear combinations are called the
MT-canonical correlation coefficients.

The MT-functions are selected from the exponential family pa-
rameterized by scaling parameter. Under this class, it is shown that
nonlinear dependencies can be detected by MTCCA. The parameters
of the MT-functions are selected via maximization of a lower bound
on the largest MT-canonical correlation coefficient. We show that for
these selected parameters, the corresponding largest MT-canonical
correlation coefficient is a measure for statistical independence.
Another variant of MTCCA that uses Gaussian MT-functions pa-
rameterized by location parameter is presented in [9].

In the paper we show the superiority of MTCCA over LCCA in
recovery of a nonlinear system with known structure. Additionally,
MTCCA is illustrated for construction of networks that analyze
long-term associations between companies traded in the NASDAQ
and NYSE stock markets. We show that MTCCA better associates
companies in the same sector than does LCCA. In comparison to
[9], in this paper we apply MTCCA to a different financial data set
which includes more companies and more financial sectors.

The paper is organized as follows. In Section II, LCCA is general-
ized by applying a transform to the joint probability distribution. Se-
lection of the MT-functions associated with the transform is discussed
in section III. In Section IV, empirical implementation of MTCCA
is obtained. In Section V, MTCCA is illustrated via simulation
experiment. In Section VI, the main points of this contribution are
summarized. The propositions and theorems stated throughout the
paper are proved in [9].

II. MEASURE TRANSFORMED CANONICAL CORRELATION

ANALYSIS

Let X and Y denote two random vectors, whose observation
spaces are given by X ⊆ Rp and Y ⊆ Rq , respectively. We define
the measure space (X × Y,SX×Y , PXY), where SX×Y is a σ-algebra
over X × Y , and PXY is the joint probability measure on SX×Y .
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In this section, LCCA is generalized by applying a transform to the
joint probability measure PXY . First, a transform which maps PXY

into a set of joint probability measures
n
Q

(u,v)
XY

o
on SX×Y is derived

that have the property that they preserve statistical independence. The
MTCCA method is then obtained by applying LCCA to X and Y
under the transformed probability measure Q(u,v)

XY .

A. Transformation of the joint probability measure PXY

Definition 1. Given two nonnegative functions u : Rp → R and
v : Rq → R satisfying 0 < E [u (X) v (Y) ;PXY] < ∞, where
E [·;PXY] denotes the expectation under PXY , a transform on the
joint probability measure PXY is defined via the following relation

Q
(u,v)
XY (A) , Tu,v [PXY] (A) =

Z
A

ϕu,v (x,y) dPXY (x,y) , (1)

where A ∈ SX×Y , x ∈ X , y ∈ Y , and

ϕu,v (x,y) , u (x) v (y)/E [u (X) v (Y) ;PXY]. (2)

The functions u (·) and v (·), associated with the transform Tu,v [·],
are called the MT-functions.

In [9] it is shown that Q
(u,v)
XY has the following properties:

1) Q(u,v)
XY is a probability measure on SX×Y that preserves statistical

independence, 2) Q(u,v)
XY is absolutely continuous w.r.t. PXY , with

Radon-Nikodym derivative [10] given by

dQ
(u,v)
XY (x,y)/dPXY (x,y) = ϕu,v (x,y) . (3)

B. The MTCCA procedure

MTCCA generates a sequence of pairwise linear combinations`
aT

k X,bT
k Y
´
, k = 1, . . . , r = min (p, q) that have the follow-

ing statistical properties under the transformed probability measure
Q

(u,v)
XY : 1) aT

k X and bT
k Y have unit variance, 2) the correlation

between aT
k X and bT

k Y is maximal, and 3)
`
aT

k X,bT
k Y
´

are un-
correlated with

`
aT

l X,bT
l Y
´

for all 1 < l < k. In MTCCA, the pairs
(ak,bk) and

`
aT

k X,bT
k Y
´

are called the k-th order MT-canonical
directions and the k-th order MT-canonical variates, respectively. The
correlation coefficient between aT

k X and bT
k Y under Q(u,v)

XY is called
the k-th order MT-canonical correlation coefficient.

The correlation coefficient between aT X and bT Y under Q(u,v)
XY

is given by

Corr
h
aT X,bT Y;Q

(u,v)
XY

i
=

aT Σ
(u,v)
XY bq

aT Σ
(u,v)
X a

q
bT Σ

(u,v)
Y b

, (4)

where Σ
(u,v)
X ∈ Rp×p, Σ

(u,v)
Y ∈ Rq×q and Σ

(u,v)
XY ∈ Rp×q denote

the covariance matrix of X under the marginal probability measure
Q

(u,v)
X , the covariance matrix of Y under the marginal probability

measure Q
(u,v)
Y , and their cross-covariance matrix under Q(u,v)

XY ,
respectively. It is assumed that Σ

(u,v)
X and Σ

(u,v)
Y are non-singular.

Using (3) it can be shown that the measure transformed covariance
cross-covariance matrices take the form

Σ
(u,v)
X = E

h
XXTϕu,v (X,Y) ;PXY

i
− µ(u,v)

X µ(u,v)T
X ,

Σ
(u,v)
Y = E

h
YYTϕu,v (X,Y) ;PXY

i
− µ(u,v)

Y µ(u,v)T
Y ,

Σ
(u,v)
XY = E

h
XYTϕu,v (X,Y) ;PXY

i
− µ(u,v)

X µ(u,v)T
Y ,

(5)

where the vectors µ(u,v)
X = E [Xϕu,v (X,Y) ;PXY], and µ(u,v)

Y =

E [Yϕu,v (X,Y) ;PXY]. Equation (5) implies that Σ
(u,v)
X , Σ

(u,v)
Y

and Σ
(u,v)
XY are weighted covariance and cross-covariance matrices

of X and Y under PXY , with weighting function ϕu,v (·, ·).

MTCCA solves the following constraint maximization sequentially
over k = 1, . . . r.

ρ
(u,v)
k = max

a,b∈Ek

aT Σ
(u,v)
XY b, (6)

where Ek = {a,b : aT Σ
(u,v)
X a = bT Σ

(u,v)
Y b = 1,aT Σ

(u,v)
XY bl =

bT Σ
(u,v)T
XY al = aT Σ

(u,v)
X al = bT Σ

(u,v)
Y bl = 0 ∀1 < l < k}, and

ρ
(u,v)
k denotes the k-th order MT-canonical correlation coefficient.
In similar to LCCA [11], the constrained maximization problem in

(6) reduces to the set of r distinct solutions of the following GEVD
problem"

0 Σ
(u,v)
XY

Σ
(u,v)T
XY 0

#»
a
b

–
= ρ

"
Σ

(u,v)
X 0

0 Σ
(u,v)
Y

# »
a
b

–
,

(7)
where ρ = ρ

(u,v)
k is the k-th largest generalized eigenvalue of the

pencil in (7), and
ˆ
aT ,bT

˜T
=
ˆ
aT

k ,b
T
k

˜T
is its corresponding

generalized eigenvector.
By modifying the MT-functions u (·) and v (·), the joint probability

measure Q
(u,v)
XY is modified, resulting in a family of canonical

correlation analyses, generalizing LCCA. In particular, by choosing
u (x) ≡ 1 and v (y) ≡ 1, then Q

(u,v)
XY = PXY , and the LCCA is

obtained.

III. MTCCA WITH EXPONENTIAL MT-FUNCTIONS

In this subsection, we parameterize the MT-functions u (x; s) and
v (y; t) with parameters s ∈ Rp and t ∈ Rq under the exponential
family. This will result in the corresponding cross-covariance matrix
Σ

(u,v)
XY (t, s) gaining sensitivity to nonlinear relationships between X

and Y. Optimal choice of the parameters s and t is also discussed.
Let u (·; ·) and v (·; ·) be defined as the parameterized functions

u (x; s) , exp
“
sT x

”
and v (y; t) , exp

“
tT y

”
, (8)

where s ∈ Rp and t ∈ Rq . Using (2), (5) and (8) one can verify that
the cross-covariance matrix of X and Y under Q(u,v)

XY takes the form

Σ
(u,v)
XY (s, t) = ∂2 logMXY (s, t)/∂s∂tT , (9)

where MXY (s, t) , E
ˆ
exp

`
sT X + tT Y

´
;PXY

˜
is the joint mo-

ment generating function of X,Y, and it is assumed that MXY (s, t)
is finite in some open region in Rp × Rq containing the origin. We
note that the quantity in (9) has been proposed in [12] for blind
source separation.

In the following Theorem, which follows directly from (9) and the
properties of MXY (s, t) [13], one sees that Σ

(u,v)
XY (s, t) can capture

nonlinear dependencies.

Theorem 1. Let U denote an arbitrary open region in Rp × Rq

containing the origin, and assume that MXY (s, t) is finite on U .
The random vectors X and Y are statistically independent under
PXY iff Σ

(u,v)
XY (s, t) = 0 ∀ (s, t) ∈ U .

Therefore, if X and Y are statistically dependent, then there exist
a ∈ Rp, b ∈ Rq , s ∈ Rp and t ∈ Rq , such that aT Σ

(u,v)
XY (s, t) b 6=

0. Thus, (4) implies that if X and Y are statistically dependent then
there exist linear combinations of the form aT X and bT Y which
are correlated under Q(u,v)

XY .
The parameters s, t are chosen via maximization of a lower bound

on the first-order MT-canonical correlation coefficient ρ(u,v)
1 (s, t).

We show that the resultant first-order MT-canonical correlation coef-
ficient is sensitive to dependence between X and Y.



Proposition 1. Define the following element-by-element average:

ψ(u,v) (s, t) ,

vuuuut 1

pq

pX
i=1

qX
j=1

h
Σ

(u,v)
XY (s, t)

i2
i,jh

Σ
(u,v)
X (s, t)

i
i,i

h
Σ

(u,v)
Y (s, t)

i
j,j

,

where [A]i,j denotes the i, j-th entry of A.

ψ(u,v) (s, t) ≤ ρ(u,v)
1 (s, t) . (10)

Proposition 1 suggests choosing the exponential MT-functions
parameters by maximizing the lower bound in (10):

(s∗, t∗) = arg max
(s,t)∈V

ψ(u,v) (s, t) , (11)

where V a closed region in Rp × Rq containing the origin. The
maximization problem in (11) can be solved numerically, e.g., using
gradient ascent over the region V . The following theorem justifies
the use of the first-order MT-canonical correlation coefficient as a
measure of statistical independence.

Theorem 2. The random vectors X and Y are statistically indepen-
dent under PXY iff ρ(u,v)

1 (s∗, t∗) = 0.

IV. EMPIRICAL IMPLEMENTATION OF MTCCA

Given N i.i.d. samples of (X,Y) an empirical version of MTCCA
can be implemented by replacing the measure transformed covariance
matrices Σ

(u,v)
X , Σ

(u,v)
Y and Σ

(u,v)
XY in (6), (7) and (11) with the

following estimators.

Σ̂
(u,v)

X ,
1

N − 1

NX
n=1

XnXT
n ϕ̂u,v (Xn,Yn)− N

N − 1
µ̂(u,v)

x µ̂(u,v)T
x ,

Σ̂
(u,v)

Y ,
1

N − 1

NX
n=1

YnYT
n ϕ̂u,v (Xn,Yn)− N

N − 1
µ̂(u,v)

y µ̂(u,v)T
y ,

Σ̂
(u,v)

XY ,
1

N − 1

NX
n=1

XnYT
n ϕ̂u,v (Xn,Yn)− N

N − 1
µ̂(u,v)

x µ̂(u,v)T
y ,

(12)
where (Xn,Yn), n = 1, . . . , N is a sequence of i.i.d. samples from

the joint distribution PXY , µ̂(u,v)
X ,

NP
n=1

Xnϕ̂u,v(Xn,Yn)

N
, µ̂

(u,v)
Y ,

NP
n=1

Ynϕ̂u,v(Xn,Yn)

N
, and ϕ̂u,v (Xn,Yn) , u(Xn)v(Yn)

1
N

NP
n=1

u(Xn)v(Yn)

.

Under some mild assumptions it is shown in [9] that the estimators
in (12) are strongly consistent.

V. NUMERICAL EXAMPLES

In this section, we illustrate the use of empirical MTCCA with the
exponential MT-functions for recovery of a nonlinear system with
known structure, and for measuring long-term associations between
companies. The empirical MTCCA was performed via the procedure
described in [9].

A. Recovery of a nonlinear system with known structure

We consider the random vectors X = [X1, X2, X3, X4, X5]
T and

Y = [Y1, Y2, Y3]
T that satisfy the following nonlinear system:

bT
1 Y = sin(aT

1 X) + 0.01W1,

bT
2 Y = cos(aT

2 X) + 0.01W2,
(13)

where Xi, i = 1, . . . , 5, Y3, and Wi, i = 1, 2, are mutually
independent standard normal random variables, a1 = [1, 0, 0, 0, 0]T ,
b1 = [1, 0, 0]T , a2 = [0, 1, 0.7, 0.5, 0.3]T , and b2 = [0, 1, 0]T . In

this example there exist two independent pairs of linear combinations`
aT

k X,bT
k Y
´
, k = 1, 2, with maximal inter-dependencies. Note that

while (aT
1 X,bT

1 Y) are correlated, (aT
2 X,bT

2 Y) are uncorrelated.
MTCCA and LCCA were applied for recovery of the system

in (13) using N = 1000 i.i.d. samples of X and Y. Averaged
estimates of the MT and linear canonical correlation coefficients and
their corresponding averaged p-values, based on 1000 Monte-Carlo
simulations, are given in Table I. Let (âk, b̂k), k = 1, 2 denote the
empirical canonical directions. The sample means and standard devia-
tions of the absolute dot products of the pairs (ak/‖ak‖2, âk/‖âk‖2)
and (bk/‖bk‖2, b̂k/‖b̂k‖2), k = 1, 2, based on 1000 Monte-Carlo
simulations, are given in Table II. The absolute dot products should
be equal to 1 when the estimated canonical directions (âk, b̂k) are
equal to (ak,bk), k = 1, 2.

Observe that MTCCA detects the true dependencies between X
and Y, and recovers (ak,bk), k = 1, 2. As expected, the LCCA
detects only the linearly dependent combinations (aT

1 X,bT
1 Y).

TABLE I
THE AVERAGED EMPIRICAL MT AND LINEAR CANONICAL CORRELATION
COEFFICIENTS AND THEIR AVERAGED p-VALUES (IN PARENTHESIS). THE

PROPOSED MTCCA METHOD CAPTURES THE HIGH CORRELATION ρ2
THAT IS MISSED BY THE STANDARD LCCA.

MTCCA LCCA
ρ̂1 0.93 (0) 0.92 (0)
ρ̂2 0.76 (0) 0.08 (0.21)
ρ̂3 0.08 (0.2) 0.03 (0.35)

TABLE II
THE SAMPLE MEANS AND STANDARD DEVIATIONS (IN PARENTHESIS) OF

c(ak, âk) AND c(bk, b̂k), k = 1, 2, WHERE c(u,v) , | uT v
‖u‖2‖v‖2

|. THE

PROPOSED MTTCA METHOD CAPTURES TRUE DEPENDENCY STRUCTURE
BETTER THAN STANDARD LCCA.

MTCCA LCCA
c(a1, â1) 0.99 (2 · 10−3) 0.99 (2 · 10−4)
c(a2, â2) 0.99 (8 · 10−3) 0.51 (0.28)
c(b1, b̂1) 0.99 (2 · 10−3) 0.99 (1.6 · 10−4)
c(b2, b̂2) 0.99 (7 · 10−3) 0.79 (0.26)

B. Measuring long-term associations between companies

In this example, MTCCA is applied for measuring of long-term
associations between pairs of companies traded on the NASDAQ and
NYSE stock markets. The companies were selected from five sectors:

1) Technology: Microsoft (MSFT), Intel (INTC), Apple (AAPL),
and International Business Machines Corp. (IBM).

2) Pharmaceuticals: Merck (MRK), Pfizer (PFE), Johnson and
Johnson (JNJ), and Eli Lilly & Co. (LLY).

3) Financials: American express (AXP), JP Morgan (JPM), Bank
of America (BAC), and U.S. Bancorp (USB).

4) Energy: Occidental Petroleum Corporation (OXY), Noble Corp.
(NE), Apache Corp. (APA) , and EOG Resources, Inc. (EOG).

5) Industrial: 3M Co. (MMM), United Technologies Corp. (UTX),
Emerson Electric Co. (EMR), and General Electric (GE).

For each pair of companies, we considered the random vectors
X = [X1, X2]

T and Y = [Y1, Y2]
T . The variables X1 and Y1 are

the log-ratios of two consecutive daily closing prices of a stock,
called log-returns. The variables X2 and Y2 are the log-ratios of
two consecutive daily trading volumes of a stock, called log-volume
ratios. Consecutive daily measurements of X and Y from January 2,
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Fig. 1. (Top) MTCCA: empirical first-order MT-canonical correlation
coefficients. (Bottom) LCCA: empirical first-order linear canonical correlation
coefficients. Note the five blocks of mutually high canonical correlations
revealed by MTCCA; MTCCA better clusters companies in similar sectors.

2001 to December 31, 2010, comprising 2514 samples, were obtained
from the YAHOO finance database.

Fig. 1 displays the matrix of empirical first-order MT-canonical
correlation coefficients, and the matrix of first-order linear canonical
correlation coefficients, respectively. One can notice that MTCCA
better clusters companies in the same sector. In this example, the p-
values associated with all empirical first-order canonical correlation
coefficients were less than 0.01.

The empirical first-order canonical correlation coefficients (MT
and linear) were used for constructing graphical models in which
the nodes represent the compared companies. The criterion for
connecting a pair of nodes was set to empirical first-order canonical
correlation coefficient greater than a threshold λ. Fig. 2 compares the
graphical models selected by MTCCA and LCCA. In the first column
we show the graphs selected by MTCCA for λ = 0.46, 0.5, 0.59. In
the second column we show the corresponding graphs selected by
LCCA by scanning λ over the interval [0, 1] and finding the graph
with minimum edit distance. The symmetric difference graphs are
shown in the third column. The red lines in the symmetric difference
graphs indicate edges found by MTCCA and not by LCCA, and
vice-versa for the black lines. Note that for all of the threshold
parameters λ investigated, the MTTCA graph shows a larger number
of edges than the closest LCCA graph. This result suggests that
MTCCA has captured more dependencies than LCCA. While there
is no ground truth validation, the fact that MTCCA clusters together
companies in similar sectors provides anecdotal support for the power
and applicability of MTCCA.

VI. CONCLUSION

In this paper, LCCA was generalized by applying a transform to the
joint probability distribution of X and Y. By modifying the functions
associated with the transform, this generalization, called MTCCA,
preserves independence and captures nonlinear dependencies. A class
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Fig. 2. Left column: The graphical models selected by MTCCA for threshold
levels λ = 0.46, 0.5, 0.59. Middle column: The closest graphs, in the
edit distance sense, selected by LCCA over the range of threshold levels
[0, 1]. Right column: The symmetric difference graphs: the red lines in the
symmetric difference graphs indicate edges found by MTCCA and not by
LCCA, and vice-versa for the black lines. For these values of λ, MTCCA
detects more dependencies than LCCA: the MTCCA graph has more edges
that than the closest LCCA graph.

of MTCCA was proposed based on specification of MT-functions in
the exponential family. MTCCA was compared to LCCA for recovery
of a nonlinear system with known structure, and for measuring long-
term associations between companies traded on the NASDAQ and
NYSE stock markets. Finding other classes of MT-functions that have
a similar capability to accurately detect nonlinear dependencies is a
topic for future research.
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